DOI QR코드

DOI QR Code

Removal of Uranium from U-bearing Lime-Precipitate using dissolution and precipitation methods

우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거

  • Received : 2012.04.09
  • Accepted : 2012.05.22
  • Published : 2012.06.30

Abstract

This study was carried out to remove (/recover) the uranium from the Uranium-bearing Lime Precipitate (ULP). An oxidative dissolution of ULP with carbonate-acidified precipitation and a dissolution of ULP with nitric acid-hydrogen peroxide precipitation were discussed, respectively. In point of view the dissolution of uranium in ULP, nitric acid dissolution which could dissolved more than 98% of uranium was more effective than carbonate dissolution. However, in this case, uranium was dissolved together with a large amount of impurities such as Al, Ca, Fe, Mg, Si, etc. and some impurities were also co-precipitated with uranium during a hydrogen peroxide precipitation. On the other hand, in the case of carbonate dissolution-acidified precipitation, U was dissolved less than 90%. Therefore, it was less effective than nitric acid dissolution for the volume reduction of radioactive solid waste. However, it was very effective to recover the pure uranium, because impurities were hardly dissolved and hardly co-precipitated with uranium.

본 연구는 우라늄-함유 석회침전물로부터 U을 제거(/회수) 하기위하여 탄산염 산화용해-산성화 침전과 질산용해-과산화수소 침전을 각각 고찰하였다. 석회침전물 내 우라늄을 용해하는 관점에서는 질산용해가 유리하나 (약 98% 이상 용해) 이 경우 U과 Al, Ca, Fe, Mg, Si 등의 공존 불순물이 다량 공용해되고, 또한 과산화수소 침전에서도 상당량의 불순물이 U과 함께 공침전 된다. 한편 탄산염 용해에 의한 산성화 침전은 우라늄의 용해가 90% 이하로 방사성 고체페기물의 부피감용 측면에서는 질산용해 보다 덜 효율적이지만, 우라늄과 불순물의 공용해나 산성화 침전에 의한 우라늄과 불순물의 공침전이 거의 일어나지 않아 보다 순수한 U을 회수하는 측면에서는 매우 효과적이다.

Keywords

References

  1. "Regulation for the receiving of low- and intermediate radioactive waste", Korea Radioactive Waste Management Corporation, (2009).
  2. "Regulation on the basis to estimate the cost of radioactive waste disposal and spent fuel management", Ministry of Knowledge Economy, Prescription No. 2011-197, (2011).
  3. International Atomic Energy Agency report, "Minimization of waste from uranium purification, enrichment and fuel fabrication", IAEA-TECDOC-1115, (1999).
  4. B. L. Perkins, "Evaluation of environmental control technologies for commercial uranium nuclear fuel fabrication facilities", Los Alamos National Laboratory Report, LA-9398-MS (1983).
  5. D. W. Shoesmith, "Used fuel and uranium dioxide dissolution studies-review", NWMO TR-2007-03, Nuclear Waste Management Organization, (2008)
  6. K. W. Kim, D. Y. Chung, H. B. Yang, J. K. Lim, E. H. Lee, K. C Song, and K. Song, "A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media", Nud. Tech. 166, pp. 170-179 (2009).
  7. S. M. Pepper, L. F. Brodnax, S. E. Field, R. A. Zehnder, S. N. Valdez, and W. H. Runde, "Kinetic study of the oxidation dissolution of $UO_{1}$ in aqueous carbonate media", Ind. Eng. Chem. Res., 43, pp. 8188-8193 (2004). https://doi.org/10.1021/ie049457y
  8. C. Soderquist, and B. Hanson, "Dissolution of spent nuclear fuel in carbonate peroxide solution", J. Nucl. Mat., 396, pp. 159-162 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.001
  9. K. W. Kim, J. T. Hyun, E. H. Lee, G. I, Park, K. W. Lee, M. Y. Yoo, K. C Song, and J. K. Moon, "Recovery of uranium from (U,Gd)$O_{2}$ nuclear fuel scrap using dissolution and precipitation in carbonate media", J. Nucl. Mat., 418, pp. 93-97 (2011). https://doi.org/10.1016/j.jnucmat.2011.06.019
  10. N. Asanuma, M. Harada, Y. Ikeda and H. Tomiyasu, "New approach to nuclear fuel reprocessing in non-acidic aqueous solutions", J. Nucl. Sci. Tech., 38(10), pp. 866-871 (2001). https://doi.org/10.1080/18811248.2001.9715107
  11. C.F.V. Mason, W.R. J.R. Turney, B.M. Thomson, N. Lu, P.A. Longman, and C.J. Chisholm-Brause, "Cabonate leaching of uranium in contaminated soils", Enviro. Sci. Tech., 31(10), pp. 2707-2711 (1997). https://doi.org/10.1021/es960843j
  12. E. H. Lee, J. G. Lim, D. Y. Chung, H. B. Yang and K. W. Kim, "Evaluation of $Na_{2}CO_{3}-H_{2}O_{2}$ carbonate solution Stability", J. Korean Radioactive Waste Soc., 9 (3), pp. 131-139 (2011). https://doi.org/10.7733/jkrws.2011.9.3.131
  13. E. H. Lee, J. G. Lim, D. Y. Chung, H. B. Yang and K. W. Kim, "The characteristics of an oxidative dissolution of simulated fission product oxides in $(NH_{4})_{2}CO_{3}$ solution containing $H_{2}O_{2}$", J. Korean Radioactive Waste Soc., 7(2), pp. 93-100 (2009)
  14. D. Y. Chung, H. S. Seo, J. W. Lee, H. B. Yang, E. H. Lee and K. W. Kim, "Oxidative leaching of uranium from SIMFUEL using $Na_{2}CO_{3}-H_{2}O_{2}$ solution", J. Radioanal. Nucl. Chem.. 284, pp 123-129 (2010). https://doi.org/10.1007/s10967-009-0443-6
  15. J. A. Dean, "Lange's Handbook of Chemistry", 12th Edition, McGraw-Hill Book Company. (1979).
  16. E. Ekeroth and M. Jonsson, "Oxidation of $UO_{2}$ by radiolytic oxidants", J Nucl. Mat., 322, pp. 242-248 (2003). https://doi.org/10.1016/j.jnucmat.2003.07.001
  17. E. H. Lee, J. K. Lim, D. Y. Chung, H. B. Yang, J. H. Yoo and K. W. Kim, "The oxidative-dissolution behaviors of fission products in a $Na_{2}CO_{3}-H_{2}O_{2}$ solution", J. Radioanal. Nucl. Chem., 281, pp. 339-346 (2009). https://doi.org/10.1007/s10967-009-0018-6
  18. K. W. Kim, Y. H. Kim, S. Y. Lee, J. W. Lee, K. S. Joe, E. H. Lee, J. S. Kim, K. Song, and K. C. Song, "Precipitation Characteristics of Uranyl Ions at Different pHs Depending on the Presence of Carbonate Ions and Hydrogen Peroxide", Envion. Sci. Technol., 43, pp. 2355-2361 (2009) https://doi.org/10.1021/es802951b
  19. K. W. Kim, Y. H. Kim, E. H. Lee, K. Song, and K. C. Song, "Study on electrolytic recoveries of carbonate salt and uranium from a uranyl peroxy carbonato complex solution generated from a carbonate-leaching process", Ind. Eng. Chem. Res., 49, pp. 2085-2092 (2009).
  20. R. C. Merritt, "The extractive metallurgy of uranium", Colorado school of Mines Research Institute, United States Atomic Energy Commission, (1971).
  21. R. Djogic, V. Cuculic, M. Branica, "Precipitation of uranium (IV) peroxide ($UO_{4}$) in sodium perchlorate solution", Croatica Chimica Acta, 78(4), pp. 575-580 (2005).

Cited by

  1. Removal of Uranium by an Alkalization and an Acidification from the Thermal Decomposed Solid Waste of Uranium-bearing Sludge vol.11, pp.2, 2013, https://doi.org/10.7733/jkrws.2013.11.2.85