DOI QR코드

DOI QR Code

Isolation of Citrus Peel Flavonoid Bioconversion Microorganism and Inhibitory Effect on the Oxidative Damage in Pancreatic Beta Cells

진피 플라보노이드 생물전환 균주 분리 및 췌장 베타세포에 대한 산화적 손상 억제 효과

  • Park, Chi-Deok (BioHealth Convergence center, Daegu Technopark) ;
  • Jung, Hee-Kyung (BioHealth Convergence center, Daegu Technopark) ;
  • Park, Chang-Ho (BioHealth Convergence center, Daegu Technopark) ;
  • Jung, Yoo-Seok (BioHealth Convergence center, Daegu Technopark) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Ko, Hee-Sun (Department of Microbiology, College of Natural Science, Keimyung University) ;
  • Kang, Dong-Hee (Department of Microbiology, College of Natural Science, Keimyung University) ;
  • Kim, Hyun-Soo (Department of Microbiology, College of Natural Science, Keimyung University)
  • 박치덕 (대구테크노파크 바이오헬스융합센터) ;
  • 정희경 (대구테크노파크 바이오헬스융합센터) ;
  • 박창호 (대구테크노파크 바이오헬스융합센터) ;
  • 정유석 (대구테크노파크 바이오헬스융합센터) ;
  • 홍주헌 (대구가톨릭대학교 외식식품산업학부) ;
  • 고희선 (계명대학교 미생물학과) ;
  • 강동희 (계명대학교 미생물학과) ;
  • 김현수 (계명대학교 미생물학과)
  • Received : 2012.01.05
  • Accepted : 2012.01.20
  • Published : 2012.02.29

Abstract

In this study, the optimum conditions of fermentation were determined by isolating the microorganisms with the ability to bioconvert the Citrus peel flavonoid, and the effect of the fermented Citrus peel extract which was bioconverted on the oxidative damage of HIT-T15 cell was investigated. The Aureobasidium pullulans Y-12 was isolated and identified with the strains having bioconversion activity. The fermentation conditions for bioconversion activity were confirmed to be optimal when culturing for three days at $25^{\circ}C$, 150 rpm in a culture medium containing 5% Citrus peel power and 0.8% casitone. As a result of bioconversion, 32.8 mg/g and 21.5 mg/g of naringenin and hesperetin, which were aglycone flavones, were produced respectively. Also in the flavonoid content, it was confirmed that FCP produced 154.8 mg/g while CP produced 33.7 mg/g, thus producing more by approximately 4.6 times. As a result of treating FCP and CP after inducing the oxidative damage for HIT-T15 cell by treating the deoxy-D-ribose with $IC_{50}$ (38 mM) concentration, the surviving rate was recovered to 90% for FCP treatments in the 0.01 mg/mL concentration and for CP treatments in the 0.025 mg/mL concentration. Also in the insulin secretion rate, FCP treatments increased by 206% and CP treatments by 132% when treated in the 0.1 mg/mL concentration. As the bioconverted FCP can inhibit the oxidative damage of HIT-T15 cell in the low concentration, it was considered its usability as the functional material for prevention of the type 2 diabetes.

Keywords

References

  1. Korea Food & Drug Administration. (2005) The Korean Pharmacopeia. 8th ed., pp. 1455-1456. Shinil books, Seoul, Korea.
  2. Son, H. S., H. S. Kim, T. B. Kwon, and J. S. Ju (1992) Isolation, purification and hypotensive effect of bioflavonoid in citrus sinensis. J. Kor. Soc. Food Nutr. 21: 136-142.
  3. Laura, B. (1998) Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333.
  4. Hyon, J. S., S. M. Kang, S. Mahinda, W. J. Koh, T. S. Yang, M. C. Oh, C. K. Oh, Y. J. Jeon, and S. H. Kim (2010) Antioxidative activities of extracts from dried Citrus sunki and C. unshiu peels. J. Kor. Soc. Food Sci. Nutr. 39: 1-7. https://doi.org/10.3746/jkfn.2010.39.1.001
  5. Kuhnan, J. (1976) The flavonoids, A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-191.
  6. Hertog, M. G. L., E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  7. Garg, A., S. Garg, L. J. Zaneveld, and A. K. Singla (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15: 655-669. https://doi.org/10.1002/ptr.1074
  8. Garcia, B. O., J. Castillo, F. R. Marin, A. Ortuno, and J. A. Del Rio (1997) Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45: 4505-4515. https://doi.org/10.1021/jf970373s
  9. Erlund, I. (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24: 851-74. https://doi.org/10.1016/j.nutres.2004.07.005
  10. Elisa, T., L. G. Maurizio, G. Santo, D. M. Danila, and G. Marco (2007) Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104: 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
  11. Ameer, B., R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff (1995) Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60: 34-40.
  12. Ross, J. A. and C. M. Kasum (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22: 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  13. Kanaze, F. I., M. I. Bounartzi, M. Georgarakis, and I. Niopas (2007) Pharmaco kinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr. 61: 472-477. https://doi.org/10.1038/sj.ejcn.1602543
  14. Song, E. Y., Y. H. Choi, K. H. Kang, and J. S. Koh (1998) Free sugar, organic acid, hesperidin, naringin and inorganic elements changes of Cheju fruits according to harvest date. Kor. J. Food Sci. Technol. 30: 306-312.
  15. Rhyu, M. R., E. Y. Kim, I. Y. Bae, and Y. K. Park (2002) Contents of naringin, hesperidin and neohesperidin in premature Korean citrus fruits. Kor. J. Food Sci. Technol. 34: 132-135.
  16. Koh, G. P., J. T. Woo, D. H. Lee, S. J. Oh, S. W. Kim, J. W. Kim, Y. S. Kim, and D. B. Park (2007) Mechanism of 2-Deoxy-D-ribose-induced damage in pancreatic ${\beta}$-cells. J. Kor. Diabetes 31: 105-112. https://doi.org/10.4093/jkda.2007.31.2.105
  17. Robertson R. P., J. Harmon, P. O. Tran, Y. Tanaka, and H. Takahashi (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581-587. https://doi.org/10.2337/diabetes.52.3.581
  18. Robertson, R. P. (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 279: 42351-42354. https://doi.org/10.1074/jbc.R400019200
  19. Leite, R. S. R., H. F. Alves-Prado, H. Cabral, F. C. Pagnocca, E. Gomes, and R. Silva (2008) Production and characteristics comparison of crude ${\beta}$-glucosidase produced by microorganisms Therm cscus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme and Microbial Technology. 43: 391-395. https://doi.org/10.1016/j.enzmictec.2008.07.006
  20. Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2011) Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J. Korean Soc. Appl. Biol. Chem. 54: 169-176.
  21. Miyake, Y., K. Yamamoto, N. Tsujihara, and T. Osawa (1998) Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33: 689-695. https://doi.org/10.1007/s11745-998-0258-y
  22. Shimoda, K., N. Kubota, K. Taniuchi, D. Sato, N. Nakajima, H. Hamada, and H. Hamada (2010) Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells. Phytochemistry. 71: 201-205. https://doi.org/10.1016/j.phytochem.2009.09.035
  23. Youssef, F., T. Roukas, and C. G. Biliaderis (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 34: 355-366. https://doi.org/10.1016/S0032-9592(98)00106-X
  24. Lee, S. J., K. H. Ahn, C. S. Park, B. D. Yoon, and M. S. Kim (2009) Analysis of ${\beta}-(1{\rightarrow}3)(1{\rightarrow}6)$-Glucan Produced by Aureobasidium pullulans IMS-822. Kor. J. Microbiol. 45: 63-68.
  25. Li, X. L., Z. Q. Zhang, J. F. D. Dean, K. E. L. Eriksson, and L. G. Ljungdahl (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl. Environ. Microbiol. 59: 3212-3218.
  26. Debdulal, B. and B. Pati (2007) Optimization of tannase production by Aureobasidium pullulans DBS66. J. Microbiol. Biotechnol. 17: 1049-1053.
  27. Koh, G. P., K. S. Suh, S. Chon, S. J. Oh, J. T. Woo, S. W. Kim, J. W. Kim, and Y. S. Kim (2005) Elevated cAMP level attenuates 2-deoxy-D-ribose-induced oxidative damage in pancreatic-cells. Arch. Biochem. Biophys. 438: 70-79. https://doi.org/10.1016/j.abb.2005.03.018
  28. Cha, J. Y. and Y. S. Cho (2001) Biofunctional activities of flavonoids. J. Korean Soc. Agric. Chem. Biotechnol. 44: 122-128.
  29. Kang, S. H., Y. J. Lee, C. H. Lee, S. J. Kim, D. H. Lee, Y. K. Lee, and D. B. Park (2005) Physiological activities of peel of Jejuindigenous Citrus sunki Hort. Tanaka. Korean J. Food Sci. Technol. 37: 983-988.
  30. Kim, J. L., C. R. Bae, and Y. S. Cha (2010) Helianthus tuberosus extract has anti-diabetes effects in HIT-T15 cells. J. Kor. Soc. Food Sci. Nutr. 39: 31-35. https://doi.org/10.3746/jkfn.2010.39.1.031
  31. Jung, H. K., Y. S. Jung, C. D. Park, C. H. Park, and J. H. Hong (2010) Effect of the ethanol extract from citrus peels on oxidative damage in alloxan-induced HIT-T15 cell. J. Kor. Soc. Food Sci. Nutr. 39: 1102-1106. https://doi.org/10.3746/jkfn.2010.39.8.1102
  32. Du X. L., D. Edelstein, L. Rossetti, I. G. Fantus, H. Goldberg, F. Ziyadeh, J. Wu, and M. Brownlee (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 97: 12222-12226. https://doi.org/10.1073/pnas.97.22.12222
  33. Nishikawa T, D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-90. https://doi.org/10.1038/35008121

Cited by

  1. Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel vol.30, pp.5, 2015, https://doi.org/10.6116/kjh.2015.30.5.59.
  2. Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.358