DOI QR코드

DOI QR Code

Identification of Korean Pear Cultivars Using Combinations of SCAR Markers

  • Cho, Kang-Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Shin, Il-Sheob (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Se-Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Jeong-Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Dae-Hyun (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Shin, Yong-Uk (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Hwang, Hae-Sung (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2011.09.28
  • Accepted : 2012.03.18
  • Published : 2012.06.30

Abstract

The conventional method to identify pear tree cultivars is to evaluate the morphological characteristics of the trunk, leaves, flowers, and fruit. However, it is difficult to distinguish between the closely related pear cultivars using only morphological traits, particularly if the cultivars to be compared share the same pedigree. Thus, we developed more reliable DNA markers to identify 39 pear cultivars bred in Korea and Japan. In total, 147 random amplified polymorphic DNA (RAPD) markers were developed from 40 different random primers. The resulting 51 RAPD fragments were selected, and their sequences were determined to convert them into sequence-characterized amplified region (SCAR) markers. As a result, 19 of 51 RAPD fragments were successfully converted to SCAR markers. A single polymorphic band of the same size as the RAPD fragments or smaller DNA fragments were amplified depending on primer combinations in the 17 SCAR markers, and co-dominant polymorphisms were observed using two of the SCAR markers (named PK10_514 and PK15_616). A combination of eight SCAR markers (P561_331, P561_372, PH02_405, PH15_452, PT16_472, PK10_514, P270_593, and PK15_616) provided sufficient polymorphisms to identify 25 Korean pear cultivars among the 39 pear cultivars tested. A combination of nine SCAR markers (P561_331, P561_372, PH02_405, PH15_452, PT16_472, PT14_578, P270_593, PK10_514, and PK15_616) could be used to sufficiently distinguish among the 39 pear cultivars examined in this study. These newly developed markers will be useful as a fast and reliable tool to identify Korean pear cultivars.

Keywords

References

  1. Bao, L., K. Chen, D. Zhang, Y. Cao, T. Yamamoto, and Y. Teng. 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet. Resour. Crop Evol. 54:959-971. https://doi.org/10.1007/s10722-006-9152-y
  2. Bell, R.L. 1990. Pears (Pyrus), p. 655-697. In: J.N. Moore and J.R. Ballington (eds.). Genetic resources of temperate fruit and nut crops. Intl. Soc. Hort. Sci., Wageningen, The Netherlands.
  3. Bernet, G.P., S. Bramardi, D. Calvache, E.A. Carbonell, and M.J. Asins. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breed. 122:146-152. https://doi.org/10.1046/j.1439-0523.2003.00838.x
  4. Botta, R., A. Akkak, G. Me, L. Radicati, and V. Casavecchia. 1998. Identification of pear cultivars by molecular markers. Acta Hort. 457:63-70.
  5. Cho, K.H., S. Heo, H.R. Kim, J.H. Kim, I.S. Shin, S.E. Han, S.E. Kim, and D.H. Kim. 2010. Discrimination of Korean apple cultivars using combination of RAPD-SCAR markers. Kor. J. Hort. Sci. Technol. 28:828-835.
  6. Gianfranceschi, L., N. Seglias, R. Tarchini, M. Komjanc, and C. Gessler. 1998. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96:1069-1076. https://doi.org/10.1007/s001220050841
  7. Goulao, L., L. Cabrita, C.M. Oliveira, and J.M. Leitao. 2001. Comparing RAPD and AFLPTM analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119:259-270. https://doi.org/10.1023/A:1017519920447
  8. Hernandez, P., A. Martin, and G. Dorado. 1999. Development of SCARs by direct sequencing of RAPD products: A practical tool for the introgression and marker-assisted selection of wheat. Mol. Breed. 5:245-253. https://doi.org/10.1023/A:1009637928471
  9. Iketani, H., T. Manabe, N. Matsuta, T. Akihama, and T. Hayashi. 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in East Asia pear (Pyrus spp.). Genet. Resour. Crop Evol. 45:533-539. https://doi.org/10.1023/A:1008646016181
  10. Jun, J.H., K.H. Chung, S.B. Jeong, and H.J. Lee. 2005. Identification of RAPD and AFLP markers linked to the fruit acidity gene D in Peach (Prunus persica). J. Kor. Soc. Hort. Sci. 46:43-48.
  11. Kim, C.S., G.P. Lee, D.H. Han, K.H. Ryu, and C.H. Lee. 2000. SCARs markers derived from RAPD for cultivar identification in Pyrus pyrifolia. J. Kor. Soc. Hort. Sci. 41:125-128.
  12. Kimura, T., Y.Z. Shi, M. Shoda, K. Kotobuki, N. Matsuta, T. Hayashi, Y. Ban, and T. Yamaomto. 2002. Identification of Asian pear varieties by SSR analysis. Breed. Sci. 52:115-121. https://doi.org/10.1270/jsbbs.52.115
  13. Koller, B., A. Lehmann, J.M. McDermott, and C. Gessler. 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85:901-904.
  14. Lin, J., X.C. Wang, Y.H. Chang, and J.G. Fang. 2011. Development of a novel and efficient strategy for practical identification of Pyrus spp (Rosaceae) cultivars using RAPD fingerprints. Genet. Mol. Res. 10:932-942. https://doi.org/10.4238/vol10-2gmr1097
  15. Lu, Z.X., G.L. Reighard, W.V. Baird, A.G. Abbott, and S. Rajapakse. 1996. Identification of peach rootstock cultivars by RAPD markers. HortScience 31:127-129.
  16. Monte-Corvo, L., L. Cabrita, C. Oliveira, and J. Leitao. 2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet. Resour. Crop Evol. 47:257-265. https://doi.org/10.1023/A:1008794809807
  17. Muralidharan, K. and E.K. Wakeland. 1993. Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. BioTechniques 14:362-364.
  18. Oliveira, C.M., M. Mota, L. Monte-Corvo, L. Goulao, and D.L. Silva. 1999. Molecular typing of Pyrus based on RAPD markers. Sci. Hort. 79:163-174. https://doi.org/10.1016/S0304-4238(98)00205-2
  19. Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985-993.
  20. Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey, and A. Rafalski. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225-238. https://doi.org/10.1007/BF00564200
  21. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy: The principles and practice of numerical classification. W.H. Freeman and Co., San Francisco, CA, USA. p. 1-15.
  22. Stoeckli, S., K. Mody, A. Patocchi, M. Kellerhals, and S. Dorn. 2009. Rust mite resistance in apple assessed by quantitative trait loci analysis. Tree Genet. Genom. 5:257-267. https://doi.org/10.1007/s11295-008-0186-5
  23. Teng, Y., K. Tanabe, F. Tamura, and A. Itai. 2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci. 127:262-270.
  24. Teramoto, S., Y. Kano-Murakami, M. Hori, and K. Kamiyama. 1994. 'DNA finger-printing' to distinguish cultivar and parental relation of Japanese pear. J. Japan. Soc. Hort. Sci. 63:17-21. https://doi.org/10.2503/jjshs.63.17
  25. Venkateswarlu, M., S.R. Urs, B.S. Nath, H.E. Shashidhar, M. Maheswaran, T.M. Veeraiah, and M.G. Sabitha. 2006. A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genet. Genom. 3:15-24. https://doi.org/10.1007/s11295-006-0048-y
  26. Vidal, J.R., P. Delavault, M. Coarer, and A. Defontaine. 2000. Design of grapevine (Vitis vinifera L.) cultivar-specific SCAR primers for PCR fingerprinting. Theor. Appl. Genet. 101:1194-1201. https://doi.org/10.1007/s001220051597
  27. Wunsch, A. and J.I. Hormaza. 2002. Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:59-67. https://doi.org/10.1023/A:1015723805293
  28. Xu, H., D.J. Wilson, S. Arulsekar, and A.T. Bakalinsky. 1995. Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. J. Amer. Soc. Hort. Sci. 120:714-720.
  29. Xu, M., E. Huaracha, and S.S. Korban. 2001. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 44:63-70. https://doi.org/10.1139/gen-44-1-63
  30. Zhao, M.Z., Y.P. Zhang, W.M. Wu, C. Wang, Y.M. Qian, G. Yang, and J.G. Fang. 2011. A new strategy for complete identification of 69 grapevine cultivars using random amplified polymorphic DNA (RAPD) markers. Afr. J. Plant Sci. 5:273-280.

Cited by

  1. 감 품종 판별용 SCAR 마커 개발 vol.31, pp.6, 2012, https://doi.org/10.7235/hort.2013.13057
  2. A Novel Set of EST-Derived SSR Markers for Pear and Cross-Species Transferability in Rosaceae vol.32, pp.1, 2012, https://doi.org/10.1007/s11105-013-0638-4
  3. Study of Genetic Diversity of Pear Genotypes and Cultivars (Pyrus communis L.) Using Inter-Simple Sequence Repeat Markers (ISSR) vol.59, pp.4, 2012, https://doi.org/10.1007/s10341-017-0325-y
  4. Genetic Relationship of Iranian Pear Genotypes with European and Asian Pears as Revealed by Random Amplified Polymorphic DNA Markers vol.17, pp.1, 2012, https://doi.org/10.1080/15538362.2016.1220343