DOI QR코드

DOI QR Code

Effect of Sargassum micracanthum extract on Lipid Accumulation and Reactive Oxygen Species (ROS) Production during Differentiation of 3T3-L1 Preadipocytes

3T3-L1 세포분화 중 지방축적 및 ROS 생성에 대한 잔가시 모자반 추출물의 효과

  • Lee, Young-Jun (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Yoon, Bo-Ra (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Hyeon-Son (Department of Food Science and Biotechnology, CHA University) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, CHA University) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 이영준 (강원대학교 식품생명공학과) ;
  • 윤보라 (강원대학교 식품생명공학과) ;
  • 최현선 (차의과학대학교 식품생명공학과) ;
  • 이부용 (차의과학대학교 식품생명공학과) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2012.02.01
  • Accepted : 2012.04.06
  • Published : 2012.06.30

Abstract

Obesity, a strong risk factor for the development of chronic diseases, is characterized by an increase in the number and size of adipocytes differentiated from precursor cells, preadipocytes. Recent research suggests that increased reactive oxygen species (ROS) production in 3T3-L1 adipocyte facilitates adipocyte differentiation and fat accumulation. This study was to investigate whether reduced ROS production by Sargassum micracanthum extract (SME) could protect the development of obesity through inhibition of adipogenesis. 3T3-L1 preadipocytes were treated SME for up to 8 days following standard induction of differentiation. The extent of differentiation reflected by amount of lipid accumulation and ROS production was determined by Oil red O staining and nitroblue tetrazolium (NBT) assay. Treatment of SME significantly inhibited ROS production and adipocyte differentiation that is depend on down regulation of NADPH oxidase 4 (NOX4), a major ROS generator, and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$), a key adipogenic transcription factor. These results indicate that SME can inhibit adipogenesis through a reduced ROS level that involves down-regulation of NOX4 expression or via modulation of adipogenic transcription factor.

본 연구에서는 잔가시 모자반 추출물의 항비만 및 항산화 효과를 연구하기 위하여 3T3-L1 전지방세포에 분화 유도물질을 처리하여 분화 과정 중에 잔가시 모자반의 지방축적과 ROS 생성 억제 효과를 관찰하였다. 잔가시 모자반 추출물은 XTT assay에서 두 농도(10 및 100 ${\mu}g/mL$) 모두에서 세포 독성을 보이지 않았다. 지방세포 분화 중 세포 내 지방축적 및 ROS 생성량을 비교한 결과, 잔가시 모자반 추출물을 처리한 지방세포의 경우 지방축적량과 ROS 생성량 모두 유의적으로 억제되는 것으로 나타났다. 특히 잔가시 모자반 추출물을 처리함으로써 지방세포 분화와 관련된 전사인자인 $PPAR{\gamma}$$C/EBP{\alpha}$ 발현을 유의적으로 감소시켰으며, ROS의 생성과 관련이 있는 주요 효소인 NOX4의 발현 또한 유의적으로 감소하였다. 이 결과를 통해 잔가시 모자반 추출물이 3T3-L1 지방세포 내 중성지방의 축적 억제 효과와 더불어 ROS 생성 억제에 효과적으로 작용함을 확인하였다. 따라서 잔가시 모자반은 비만과 같이 대사증후군 관련 질환의 개선을 위한 천연물 기능성 소재로의 활용이 기대된다.

Keywords

References

  1. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell, 104, 531-543 https://doi.org/10.1016/S0092-8674(01)00240-9
  2. Marcelin G, Chua S (2010) Contributions of adipocyte lipid metabolism to body fat content and implications for the treatment of obesity. Curr Opin Pharmacol, 10, 588-593 https://doi.org/10.1016/j.coph.2010.05.008
  3. Holst D, Grimaldi PA (2002) New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol, 13, 241-245 https://doi.org/10.1097/00041433-200206000-00002
  4. de Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem, 54, 945-955 https://doi.org/10.1373/clinchem.2007.100156
  5. Attie AD, Scherer PE (2009) Adipocyte metabolism and obesity. J Lipid Res, 50, 395-359
  6. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 7, 885-896 https://doi.org/10.1038/nrm2066
  7. Kim KH (2009) Perspective in regulation of adipogenesis by bioactive food components. Food Sci Industry, 42, 51-57
  8. Lee OH, Kwon YI, Hong HD, Park CS, Lee BY, Kim YC (2009) Production of reactive oxygen species and changes in antioxidant enzyme activites during differentiation of 3T3-L1 adipocyte. J Korean Soc Appl Biol Chem, 52, 70-75 https://doi.org/10.3839/jksabc.2009.012
  9. Valko M, Moncol DJ, Cronin TD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39, 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  10. Kim MH (2004) Updates in treating obesity. Kor J Health Psychol, 9, 493-509
  11. Lee HE, Lee YJ, Cho OB, Kang SM (2007) Effects of a combined diet of Jerusalem artichoke' Inulin, Lotus leaf and herb extracts in obesity induced white rat with fat diet. J Kor Soc Appl Biol Chem, 50, 295-303
  12. Reddy PM, Chow SS (1998) Focus on orlistat: a nonsystemic inhibitor of gastrointestinal lipase for weight reduction in the management of obesity. Formulary, 33, 943-959
  13. Eun WS, Kwon JH, Yang SY, Park HJ, Kim HK (2008) Development of egg yolk antibody specific to the pancreatic lipase domain for anti-obesity. Kor J Microbiol Biotechnol, 36, 299-306
  14. Bae SM, Kim JH, Cho CW, Jeong TJ, Ha JU, Lee SC (2001) Effect of microwave treatment on the antioxidant activity of rice processed by-products. J Korean Soc Food Sci Nutr, 30, 1026-1032
  15. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr, 16, 33-49 https://doi.org/10.1146/annurev.nu.16.070196.000341
  16. Morrissey PA, O'Brien NM (1998) Dietary antioxidants in health and disease. Int Dairy J, 8, 463-472 https://doi.org/10.1016/S0958-6946(98)00070-3
  17. Kopelman PG (2000) Obesity as a medical problem. Nature, 404, 635-643
  18. Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs, 9, 1806–1828 https://doi.org/10.3390/md9101806
  19. Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs, 9, 1731–1760 https://doi.org/10.3390/md9101731
  20. Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T (1989) Isolation purification and characterization of fucose containing sulfated polysaccharide from the brown seaweed Ecklonia kurome and their bloodanticoagulant activities. Carbohydr Res, 186, 119-129 https://doi.org/10.1016/0008-6215(89)84010-8
  21. Hong YK, Park IS, Jung YH, Song SH, Hong SY (1998) Effect of the seaweed Porphya yezoensis extract on triton WR-1339 induced hypercholesterolemia in Mouse. Bull Korea Fish Soc, 31, 508-515
  22. Ha JH, Kwon MC, Han JG, Jin L, Jung HS, Choi GP, Park UY, You SG, Lee HY (2008) Enhancement of immunomodulatory activities of low molecular weight fucoida isolated from Hizikia fusiforme. Korea J Food Sci Technol, 40, 545-550
  23. Lee OH, Yoon KY, Kim KJ, You SG, Lee BY (2011) Seaweed extracts as a potential tool for the attenuation of oxidative damage in obesity-related pathologies. J Phycol, 47, 548-556 https://doi.org/10.1111/j.1529-8817.2011.00974.x
  24. Student AK, Hsu RY, Lane MD (1980) Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem, 225, 4745-50
  25. Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, Hollenberg AN (2006) Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem, 28, 11205-11213
  26. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, MatsudaM, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, 114, 1752-1761 https://doi.org/10.1172/JCI21625
  27. Rosen ED (2005) The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acid, 73, 31-34 https://doi.org/10.1016/j.plefa.2005.04.004
  28. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med, 10, 355-361 https://doi.org/10.1038/nm1025
  29. Pablo C, Daiana S, Soledad C, Virginia D, Lelia D, Juan CC, Liliana NG (2011) N-Acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes. Int J Mol Sci, 12, 6936-6951 https://doi.org/10.3390/ijms12106936
  30. Sampson N, Koziel R, Zenzmaier C, Bubendorf L, Plas E, Jansen-Durr P, Berger P (2011) ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol, 25, 503-515 https://doi.org/10.1210/me.2010-0340
  31. Basuroy S, Tcheranova D, Bhattacharya S, Leffler CW, Parfenova H (2011) Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-$\alpha$-induced apoptosis. Am J Physiol Cell Physiol, 300, C256-265 https://doi.org/10.1152/ajpcell.00272.2010

Cited by

  1. Antioxidant and Anti-adipogenic Effects of Kohlrabi and Radish Sprout Extracts vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.531
  2. Anti-inflammatory Activity of Sargassum micracanthum Water Extract vol.57, pp.3, 2014, https://doi.org/10.3839/jabc.2014.036
  3. Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.990
  4. Anti-Inflammatory Activity of Ethanolic Extract of Sargassum micracanthum vol.23, pp.12, 2012, https://doi.org/10.4014/jmb.1311.11025
  5. 잡곡발효물의 제조와 항산화 활성 비교 vol.42, pp.8, 2012, https://doi.org/10.3746/jkfn.2013.42.8.1175
  6. 잔가시 모자반 에탄올 추출물의 항아토피 효과 vol.42, pp.1, 2012, https://doi.org/10.4014/kjmb.1401.01002
  7. 잔가시 모자반 추출물의 주름 개선 및 미백 효과 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1510.10002
  8. 조릿대의 잎과 줄기 추출물 분획의 염증 및 비만 억제 효과 비교 vol.30, pp.4, 2012, https://doi.org/10.15188/kjopp.2016.08.30.4.229
  9. 고지방식이 유도 비만생쥐에 대한 영계출감탕(苓桂朮甘湯) 가(加) 황기(黃芪)의 항비만 효과 vol.28, pp.2, 2012, https://doi.org/10.18325/jkmr.2018.28.2.1
  10. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.288
  11. Rhodosporidium toruloides에서의 적색 파프리카 에탄올 추출물의 중성지방 억제 효과 vol.34, pp.2, 2012, https://doi.org/10.7732/kjpr.2021.34.2.186