DOI QR코드

DOI QR Code

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites

다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성

  • Yim, Yoon-Ji (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Seo, Min-Kang (Jeonju Institute of Machinery and Carbon Composites) ;
  • Kim, Hak-Yong (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 임윤지 (전북대학교 유기소재파이버공학과) ;
  • 서민강 (전주기계탄소기술원) ;
  • 김학용 (전북대학교 유기소재파이버공학과) ;
  • 박수진 (인하대학교 화학과)
  • Received : 2012.01.10
  • Accepted : 2012.02.14
  • Published : 2012.07.25

Abstract

In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

본 연구에서는 다중벽 탄소나노튜브(MWCNT)의 함량을 1에서 10 wt%까지 달리하여 MWCNT 강화 폴리프로필렌(PP) 나노복합재료의 전자파 차폐효과 및 기계적 특성에 미치는 영향에 대해서 살펴보았다. 전기전도도는 4단자법으로 측정하였고, 전자파 차폐효과는 흡수와 반사방법으로 분석하였다. 기계적 특성은 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였으며, 모폴로지는 주사전자현미경(SEM)으로 관찰하였다. 실험결과, MWCNT의 함량이 증가함에 따라 차폐효과가 향상됨을 확인할 수 있었으며, MWCNT의 함량이 전자파 차폐효과를 결정하는 중요한 요소임을 알 수 있었다. $K_{IC}$값도 MWCNT의 함량이 증가할수록 큰 값을 가지는 것을 확인할 수 있었으나 5 wt% 이상에서는 오히려 감소하였다. 이는 과량의 MWCNT가 PP 내에서 서로 뭉침으로 인하여 $K_{IC}$값을 감소시킨 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. B. R. Kim, H. K. Lee, S. H. Park, and H. K. Kim, Thin Solid Films, 519, 3492 (2011). https://doi.org/10.1016/j.tsf.2011.01.093
  2. A. A. Al-Ghamdi and F. E. Tantawy, Compos. Part A : Appl. Sci. Manuf., 41, 1693 (2010). https://doi.org/10.1016/j.compositesa.2010.08.006
  3. C. S. Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int.Commun. Heat. Mass., 35, 744 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.02.006
  4. H. B. Shim, M. K. Seo, and S. J. Park, Polymer(Korea), 24, 860 (2000).
  5. Y. Y. Kim, J. Yun, Y. S. Lee, and H. I. Kim, Carbon Lett., 12, 48 (2011). https://doi.org/10.5714/CL.2011.12.1.048
  6. B. O. Lee, W. J. Woo, H. S. Song, H. S. Park, H. S. Hahm, J. P. Wu, and M. S. Kim, J. Ind. Eng. Chem., 7, 305 (2011).
  7. Y. Y. Kim, J. Yun, H. I. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 18, 392 (2012). https://doi.org/10.1016/j.jiec.2011.11.103
  8. G. Y. Han, O. H. Song, and D. G. Ahn, J. KSPE, 27, 71 (2010).
  9. Y. H. Chen, C. Y. Huang, F. D. Lai, M. L. Roan, K. N. Chen, and J. T. Yeh, Thin Solid Films, 517, 4984 (2009). https://doi.org/10.1016/j.tsf.2009.03.137
  10. R. B. Schulz, V. C. Plantz, and D. R. Brush, IEEE Trans. Electromagn. Compat., 30, 362 (1988).
  11. C. Y. Huang and J. F. Pai, Eur. Polym. J., 34, 261 (1998). https://doi.org/10.1016/S0014-3057(96)00248-0
  12. R. B. Schulz, V. C. Plantz, and D. R. Brush, IEEE Trans. Electromagn. Compat., 30, 187 (1988). https://doi.org/10.1109/15.3297
  13. Z. P. Wu, M. M. Li, Y. Y. Hu, Y. S. Li, Z. X. Wang, Y. H. Yin, Y. S. Chen, and X. Zhou, Scripta Mater., 64, 809 (2011). https://doi.org/10.1016/j.scriptamat.2011.01.002
  14. R. E. Haufler, J. Phys. Chem., 94, 8634 (1990). https://doi.org/10.1021/j100387a005
  15. Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, and Z. Chen, Carbon, 46, 461 (2008). https://doi.org/10.1016/j.carbon.2007.12.010
  16. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, Carbon, 45, 1614 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
  17. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Li, and T. Guo, Carbon, 45, 821 (2007). https://doi.org/10.1016/j.carbon.2006.11.020
  18. S. Bhadra, N. K. Singha, and D. Khastgir, Curr. Appl. Phys., 9, 396 (2009). https://doi.org/10.1016/j.cap.2008.03.009
  19. J. G. Kim, C. H. Chung, and Y. S. Lee, Appl. Chem.. Eng., 22, 138 (2011).
  20. S. Chae, B. Cho, B. Hong, B. Lee, and H. Byun, Appl. Chem. Eng., 21, 430 (2010).
  21. V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Macromol. Mater. Eng., 296, 894 (2011). https://doi.org/10.1002/mame.201100035
  22. K. S. Kim and S. J. Park, Carbon Lett., 13, 51 (2012). https://doi.org/10.5714/CL.2012.13.1.051
  23. D. D. L. Chung, Carbon, 39, 279 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
  24. X. Shui and D. D. L. Chung, J. Mater. Sci., 35, 1773 (2000). https://doi.org/10.1023/A:1004784720338
  25. P. Chandrasekhar and K. Naishadham, Synth. Met., 105, 115 (1999). https://doi.org/10.1016/S0379-6779(99)00085-5
  26. S. J. Park and M. K. Seo, Interface Science and Composites, Elsevier, New York, 2011.
  27. C. S. Ha and S. C. Kim, J. Appl. Polym. Sci., 35, 2211 (1988). https://doi.org/10.1002/app.1988.070350821
  28. M. K. Seo, J. R. Lee, and S. J. Park, Mater. Sci. Eng. A, 404, 79 (2005). https://doi.org/10.1016/j.msea.2005.05.065
  29. S. Hazra and A. Ghosh, J. Phys. Condens. Matter., 9, 3981 (1997). https://doi.org/10.1088/0953-8984/9/19/017
  30. C. J. Kim, H. D. Choi, K. S. Suh, and H. G. Yoon, Polymer (Korea), 27, 201 (2003).
  31. H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, Edward Anold, London, 1991.
  32. J. H. Ko, J. C. Kim, and J. H. Chang, Polymer(Korea), 33, 333 (2009).
  33. H. C. Kim, S. Jeon, H. I. Kim, H. S. Choi, M. H. Hong, and K. S. Choi, Polymer(Korea), 35, 563 (2011).
  34. J. S. Yang, D. H. Shin, K. Y. Lee, and D. H. Park, Trans. KIEE, 56, 571 (2007).

Cited by

  1. Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding vol.28, pp.6, 2015, https://doi.org/10.7234/composres.2015.28.6.333
  2. Influence of MWCNTs on Fracture Toughness of MWCNTs/Nickel-Pitch Fiber/Epoxy Composites vol.28, pp.6, 2012, https://doi.org/10.7234/composres.2015.28.6.361