DOI QR코드

DOI QR Code

Correlation analysis of human urinary metabolites related to gender and obesity using NMR-based metabolic profiling

  • Kim, Ja-Han (Integrated Metabolomics Research Group, Korea basic science institute) ;
  • Park, Jung-Dae (Integrated Metabolomics Research Group, Korea basic science institute) ;
  • Park, Sung-Soo (Department of Surgery, Korea University College of Medicine) ;
  • Hwang, Geum-Sook (Integrated Metabolomics Research Group, Korea basic science institute)
  • Received : 2012.05.05
  • Accepted : 2012.06.08
  • Published : 2012.06.20

Abstract

Metabolomic studies using human urine have shown that human metabolism is altered by a variety of environmental, cultural, and physiological factors. Comprehensive information about normal human metabolite profiles is necessary for accurate clinical diagnosis of disease and for disease prevention and treatment. In this study, metabolite correlation analyses, using $^1H$ nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistics, were performed on human urine to compare metabolic differences based on gender and/or obesity in healthy human subjects. First, we applied partial least squares discriminant analysis to the NMR spectral data set to verify the data's ability to discriminate by gender and obesity. Then, the differences in metabolite-metabolite correlation between male and female, and between normal and high body mass index (obese) subjects were investigated through pairwise correlations. Creatine and several metabolites, including isoleucine, trans-aconitate, and trimethylamine N-oxide (TMAO), exhibited different quantitative relationships depending on gender. Dimethylamine had a different correlation with glycine and TMAO, based on gender. The correlation of TMAO with amino acids was considerably lower in obese, compared to normal, subjects. We expect that the results will shed light on the metabolic pathways of healthy humans and will assist in the accurate diagnosis of human disease.

Keywords

References

  1. J. Nicholson, J. Lindon, E. Holmes, Xenobiotica 29, 1181 (1999). https://doi.org/10.1080/004982599238047
  2. J. Lindon, J. Nicholson, E. Holmes, J. Everett, Conc. in Magn. Reson. 12, 289 (2000). https://doi.org/10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W
  3. J. Nicholson, J. Connelly, J. Lindon, E. Holmes, Nat. Rev. Drug Dis. 1, 153 (2002). https://doi.org/10.1038/nrd728
  4. E. Lenz, J. Bright, I. Wilson, A. Hughes, J. Morrisson, H. Lindberg, A. Lockton, J. phar. & biom. Anal. 36, 841 (2004). https://doi.org/10.1016/j.jpba.2004.08.002
  5. C. Slupsky, K. Rankin, J. Wagner, H. Fu, D. Chang, A. Weljie, Anal. Chem. 79, 6995 (2007). https://doi.org/10.1021/ac0708588
  6. J. Lindon, E. Holmes, J. Nicholson, Prog. in Nucl. Magn. Reson. Spec. 45, 109 (2004). https://doi.org/10.1016/j.pnmrs.2004.05.001
  7. J. Nicholson, I. Wilson, Nat. Rev. Drug Dis. 2, 668 (2003). https://doi.org/10.1038/nrd1157
  8. J. Jung, G. S. Hwang, J. Kor. Magn. Reson. Soc. 15, 54 (2011). https://doi.org/10.6564/JKMRS.2011.15.1.054
  9. Y. Jung, Y. S. Jung, G. S. Hwang, J. Kor. Magn. Reson. Soc. 15, 90 (2011). https://doi.org/10.6564/JKMRS.2011.15.2.090
  10. R. Goodacre, S. Vaidyanathan, W. Dunn, G. Harrigan, D. Kell, TRENDS in Biotech. 22, 245 (2004). https://doi.org/10.1016/j.tibtech.2004.03.007
  11. E. Saude, D. Adamko, B. Rowe, T. Marrie, B. Sykes, Metabolomics 3, 439 (2007). https://doi.org/10.1007/s11306-007-0091-1
  12. J. A. Kraut, I. Kurtz, Am. J. Kidney Dis. 45, 978 (2005). https://doi.org/10.1053/j.ajkd.2005.03.003
  13. D. E. Trachtenbarg, Am. Fam. Physician 71, 1705 (2005).
  14. M. Walsh, L. Brennan, J. Malthouse, H. Roche, M. Gibney, Am. J. Clin. Nutr. 84, 531 (2006).
  15. N. Psihogios, I. Gazi, M. Elisaf, K. Seferiadis, E. Bairaktari, NMR in Biom. 21, 195 (2008). https://doi.org/10.1002/nbm.1176
  16. S. Kochhar, D. Jacobs, Z. Ramadan, F. Berruex, A. Fuerholz, L. Fay, Anal. bioch. 352, 274 (2006) . https://doi.org/10.1016/j.ab.2006.02.033
  17. E. Lenz, J. Bright, I. Wilson, S. Morgan, A. Nash, J. pharm.l & biom. Anal. 33, 1103 (2003). https://doi.org/10.1016/S0731-7085(03)00410-2
  18. C. Zuppi, I. Messana, F. Forni, F. Ferrari, C. Rossi, B. Giardina, Clin. Chim. Acta 278, 75 (1998). https://doi.org/10.1016/S0009-8981(98)00132-6
  19. J. Nicholson, I. Wilson, Prog. in Nucl. Magn. Reson. Spec. 21, 449 (1989). https://doi.org/10.1016/0079-6565(89)80008-1
  20. C. Zuppi, I. Messana, F. Forni, C. Rossi, L. Pennacchietti, F. Ferrari, B. Giardina, Clin. Chim. Acta 265, 85 (1997). https://doi.org/10.1016/S0009-8981(97)00110-1
  21. L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, in "Multi- and Megavariate Data Analysis" pp. 43-56, Umetrics Academy, Umea, 2001.
  22. M. E. Dumas, E. C. Maibaum, C. Teague, H. Ueshima, B. Zhou, J. C. Lindon, J. K. Nicholson, J. Stamler, P. Elliott, Q. Chan, E. Holmes, Anal Chem. 78, 2199 (2006). https://doi.org/10.1021/ac0517085
  23. E. Holmes, P. J. Foxall, J. K. Nicholson, G. H. Neild, S. M. Brown, C. R. Beddell, B. C. Sweatman, E. Rahr, J. C. Lindon, M. Spraul, Anal. Biochem. 220, 284 (1994). https://doi.org/10.1006/abio.1994.1339
  24. F. Guneral, C. Bachmann, Clin. Chem.40, 862 (1994).
  25. D. W. Cockcroft, M. H. Gault, Nephron. 16, 31 (1976). https://doi.org/10.1159/000180580
  26. S. H. Mudd, J. R. Poole, Metabolism 24, 721 (1975). https://doi.org/10.1016/0026-0495(75)90040-2
  27. K. Oetjen, H. Karl, Deut. Lebensm.-Rundsch 95, 403 (1999).
  28. I. Friis-Liby, F. Aldenborg, P. Jerlstad, K. Rundstrom, E. Bjornsson, Scand. J. Gastro. 39, 864 (2004). https://doi.org/10.1080/00365520410006431
  29. T. S. Church, J. L. Kuk, R. Ross, E. L. Priest, E. Biltoft, S. N. Blair, Gastroenterology. 130. 2023 (2006).
  30. S. Lowis, M. Eastwood,W. Brydon, Brit. J. Nutr. 54, 43 (2007).
  31. S. H. Zeisel, Annu. Rev. Nutr. 1, 95 (1981). https://doi.org/10.1146/annurev.nu.01.070181.000523
  32. S. H. Zeisel, K. A. DaCosta, Cancer Res. 46, 6136 (1986).
  33. Y. E. Hsia, K. J. Scully, L. E. Rosenberg, J. Clin. Invest. 50, 127 (1971). https://doi.org/10.1172/JCI106466