DOI QR코드

DOI QR Code

Structural Integrity of Small Wind Turbine Composite Blade Using Structural Test and Finite Element Analysis

구조시험 및 유한요소해석을 통한 소형풍력발전용 복합재 블레이드의 구조 안전성 평가

  • Jang, Yun-Jung (School of Mechanical Engineering, College of Engineering, Kunsan Nat'l Univ.) ;
  • Lee, Jang-Ho (School of Mechanical Engineering, College of Engineering, Kunsan Nat'l Univ.) ;
  • Kang, Ki-Weon (School of Mechanical Engineering, College of Engineering, Kunsan Nat'l Univ.)
  • 장윤정 (군산대학교 기계자동차공학부) ;
  • 이장호 (군산대학교 기계자동차공학부) ;
  • 강기원 (군산대학교 기계자동차공학부)
  • Received : 2012.04.23
  • Accepted : 2012.06.22
  • Published : 2012.09.01

Abstract

This study deals with structural analysis and testing under loading conditions calculated by computational fluid dynamics for a small composite blade that is utilized in a dual rotor wind turbine system. First, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the bending moment distribution along the blade length in previous research. Then, full-scale structural tests were conducted according to IEC 61400-2 to evaluate the structural integrity of the composite blade. These results were compared with finite element analysis to identify the accuracy of the structural analysis. Based on these results, it was revealed that the existing blade has a very high safety margin. Then, the layup of the composite blade was redesigned and analyzed using finite element analysis to achieve structural integrity and economic efficiency.

본 논문에서는 구조 시험과 유한요소해석을 통하여 소형 풍력발전용 복합재 블레이드의 구조적 안전성을 평가하였다. 먼저, 선행연구에서 공력해석을 수행하여 정격 및 극한 풍속일 때의 블레이드가 받는 굽힘 모멘트를 산출하였다. 이를 이용하여 소형풍력발전기 관련 국제 규격인 IEC 61400-2에 따른 실규모 구조 시험을 수행하여 구조적 안전성을 평가하였다. 그리고 유한요소법을 이용한 구조 해석을 수행하여 구조 시험 결과와 비교하여 이의 정확성을 판단하였다. 또한, 구조 시험을 통해 블레이드에 대한 과잉 설계가 확인되었으며 이의 해결을 위하여 블레이드의 적층 순서 및 두께를 재선정하여 구조적 안전성을 평가하였다.

Keywords

References

  1. Hwang, B. S., 2009, "An Understanding of Advanced Wind Turbines," A-JIN, Korea.
  2. Lee, S. P., Kang, K. W., Chang, S. M. and Lee, J. H., 2010, "Structural Design and Analysis for Small Wind Turbine Blade," KSMTE, Vol. 19, No. 2, pp. 288-294.
  3. Kim, H. K., Lee, J. H., Chang, S. M. and Kang, K. W., 2010, "Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade," KFMA, Vol. 13, No. 4, pp. 51-57.
  4. Kong, C. D., Park, H. B. and Choi, S. H., 2008, "A study on Structural Test Method of Blade for Small Wind Turbine System," KSAS, pp. 81-84.
  5. Kim, H. K., Kim, T. S., Lee, J. H., Moon, B. Y. and Kang, K. W., 2011, "Full Scale Structural Testing of Small Wind Turbine Composite Blade," Trans. Of the KSME A, Vol. 35, No. 11, pp. 1407-1413. https://doi.org/10.3795/KSME-A.2011.35.11.1407
  6. International Standard, IEC 61400-2, 2006, "Design Requirements for Small Wind Turbine," Second edition.
  7. Kim, B. S., Kim, M. E. and Lee, Y. H., 2008, "Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade Using Blade Element Momentum Theory," KOSME, Vol. 32, No. 6, pp. 827-833. https://doi.org/10.5916/jkosme.2008.32.6.827
  8. Kim, J. H., Kim, B. S., Kim, J. G., Nam, C. D. and Lee, Y. H., 2003, "A Study on Flow Analysis and an Estimate of Performance for HAWT by CFD," KOSME, Vol. 27, No. 7, pp. 906-913.
  9. International Standard, IEC 61400-23, 2001, "Full-Scale Structural Testing of Rotor Blades," First edition.
  10. ABAQUS version 6.10, Dassault Systemes Simulia, Inc. 2010.
  11. Jang, Y, J., Jung, J. H., Lee, J. H. and Kang, K. W., 2011, "Structural Integrity Through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade," KFMA, Vol. 15, No. 2, pp. 63-68. https://doi.org/10.5293/kfma.2012.15.2.063
  12. Kim, S. M., Yang, I. C., Kim, D. G. and Kim, H. C., 2007, "Stress and Modal Analysis for the Rotor System of a Medical Centrifuge Using Finite Element Method," KSPE, Vol. 24, No. 6, pp. 78-85.
  13. Kong, C. D., Park, H. B., Choi, S. H., Kim, S. H. and Seo, Y. T., 2008, "Structural Investigation of Composite Wind Turbine Blade Considering Fatigue Life," KSAS, pp. 330-333.