Growth Inhibition Effect of Environment-friendly Agricultural Materials in Botrytis cinerea In Vitro

친환경 유기농자재의 잿빛곰팡이병 병원균의 생장 억제 효과

  • Kwak, Young-Ki (Kangwon National University) ;
  • Kim, Il-Seop (Kangwon National University) ;
  • Cho, Myeong-Cheoul (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Seong-Chan (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Su (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2012.02.29
  • Accepted : 2012.03.29
  • Published : 2012.06.30

Abstract

Inhibition effects on spore germination and mycelia growth for gray mold (Botrytis cinerea) were investigated in vitro using environment-friendly agricultural materials as well as environment-friendly pesticides. The inhibition effect on mycelia growth of gray mold is the highest when the gray mold mycelia were treated with a pesticide (commercial name: Koreayeok, Jihabudea KM, Sootingtan, Sootingstar) that contains a mixture of Bacillus subtilis, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of less than 20% inhibition effects on the growth of gray mold mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore germination of gray mold fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (97.7%) and SulfurStar (92.3%)], respectively. These in vitro results of inhibiting of the spore germination and mycelia growth together cannot found. It remains to be determined whether the selected environment-friendly agricultural materials in effective control of gray mold in vitro can be used to control gray mold in field.

친환경 유기농자재를 이용하여 잿빛곰팡이병균의 포자 발아, 균사생장 억제효과를 기내에서 조사하였다. 그 결과 잿빛곰팡이병의 균사생장 억제 효과는 Bacillus subtilis를 주성분으로 하는 제제가 100%의 억제효과를 보였으며, 그 외의 제제는 20% 이하의 범위에서 억제효과를 나타내었다. 포자발아 억제효과는 유기황 수화제 2종('BTB', '황스타')이 각각 97.7%, 92.3%으로 나타났다. 균사생장 억제와 포자 발아억제에 모두 효과를 보이는 제제는 없었다. 따라서 잿빛곰팡이병 방제를 위해서는 포자발아 억제를 위한 방제와 균사생장억제를 위한 제제를 각각 처리하여야 할 것으로 사료되었다. 아울러 사물 기생성을 가진 잿빛곰팡이병의 방제를 위해서는 잔재물에서 생장을 막는 것이 중요하며 이를 위해 예방을 전제로 한 방제의 경우 유기황을 주성분으로 하는 제제가 적용 가능할 것으로 생각된다.

Keywords

References

  1. Choi, Y.H., H.T. Kim, J.C. Kim, K.S. Jang, K.Y. Cho, and G.J. Choi. 2006. In vitro antifungal activities of 13 fungicides against pepper anthracnose fungi. The Kor. J. of Pesticide Sci. 10:36-42.
  2. Delp, C.J. 1988. Fungicide resistance in North America. The American Phytopathological Society, St. Paul, Minn., p133.
  3. Guillem, S., C. Eva, B. Celia, A. Mannuel, and T. Isabel. 2007. The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. J. Eur. Plant Pathol. 117:393-402. https://doi.org/10.1007/s10658-007-9108-x
  4. Haggag, W.M. and S. Timmusk. 2007. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology 104:961-969.
  5. Kim, B.S., T.H. Lim, E.W. Park, and K.Y. Cho. 1995. Occurrence of multiple resistant isolate of Botrytis cinerea to benzimidazole and N-phenylcarbamate fungicide. Korean J. Plant Pathol. 11:146-150.
  6. Krebs, B., B. Hoding, S. Kubart, M.A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biological control agent. I. Activities and characterisation of Bacillus subtilis strains. J. Plant Dis. Prot. 105:181-197.
  7. Lee, G.W., M.J. Kim, J.S. Park, J.C. Chae, B.Y. Soh, J.E. Ju, and K.J. Lee. 2011. Biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17:86-89. https://doi.org/10.5423/RPD.2011.17.1.086
  8. Leoffler, W., J.S. Tschen, N. Venittanakom, M. Kugler, E. Knorpp, T.F. Hsieh, and T.G. Wu. 1986. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F-29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115:204-213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  9. Nam, M.H., H.S. Kim, W.K. Lee, M.L. Gleason, and H.G. Kim. 2011. Control efficacy of gray mold on strawberry fruits by timing of chemical and microbial fungicide applications. Kor. J. Hort. Sci. Technol. 29: 151-155.
  10. Paulitz, T.C. and J.E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81: 930-935. https://doi.org/10.1094/Phyto-81-930
  11. Perez-Garcia, A., D. Romero, and A. de Vicente. 2011. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003
  12. Raaijmakers, J.M., D.M. Weller, and L.S. Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. In natural environments. Appl. Environ. Microbiol. 63:881-887.
  13. Romero, D., A. de Vicente, R.H. Rakotoalay, S.E. Dufour, J.-W. Veening, A. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot, and A. Perez-Garcia. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. MPMI. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  14. Son, S.H., Z. Khan, S.G. Kim, and Y.H. Kim. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology 107(2):524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  15. Vidhyasekaran, P., K. Sethuraman, K. Rajappan, and K. Vasumath. 1997. Powder formulations of Pseudomonas fluorescens to control pigeonpea wilt. Biol. Control 8: 166-171. https://doi.org/10.1006/bcon.1997.0511
  16. Watanabe, T., W. Oyanagi, K. Suzuki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172:4017-4022. https://doi.org/10.1128/jb.172.7.4017-4022.1990
  17. Winding, A., S.J. Binnerup, and H. Pritchard. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47:129-141. https://doi.org/10.1016/S0168-6496(03)00261-7
  18. Wulff, E.G., C.M. Mguni, K. Mansfeld-Giese, J. Fels, M. Lubeck, and J. Hockenhull. 2002. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol. 51:574-584. https://doi.org/10.1046/j.1365-3059.2002.00753.x
  19. Yoon, C.S., Y.R. Yeoung, and B.S. Kim. 2010. The suppressive effects of calcium compounds against Botrytis cinerea in Paprika Kor. J. Hort. Sci. Technol. 8:1072-1077.
  20. Zeriouh, H., D. Romero, L. Garcia-Gutierrez, F.M. Cazorla, A. de Vicente, and A. Perez-García. 2011. The Iturin-like Lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. MPMI 24: 1540-1552. https://doi.org/10.1094/MPMI-06-11-0162