DOI QR코드

DOI QR Code

Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge

양돈분뇨의 열전처리에서 기질과 접종액의 비율이 메탄생산 퍼텐셜에 미치는 영향

  • 김승환 (국립한경대학교 바이오가스 연구센터) ;
  • 김호 (고등기술연구원) ;
  • 오승용 (국립한경대학교 바이오가스 연구센터) ;
  • 김창현 (국립한경대학교 바이오가스 연구센터) ;
  • 윤영만 (국립한경대학교 바이오가스 연구센터)
  • Received : 2012.07.13
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

This study was carried out to investigate the effect of substrate to inoculum ratio on ultimate methane potential ($B_u$) from piggery wastes. BMP(Biochemical methane potential) assays were executed for the three samples that have different organic characteristics (Filtrate of pig slurry, LF; Thermal hydrolysate of piggery sludge cake, TH; Mixture of LF and TH at the ratio of 4 to 1, Mix), and $B_u$ values obtained from BMP assays were compared with the theoretical methane potential ($B_{th}$) of each samples. While $B_u$ values (0.27, 0.44, and $0.46Nm^3\;Kg^{-1}-VS_{added}$) of TH sample that was pretreated with thermal hydrolysis were below the $B_{th}$ at all S/I ratios (0.1, 0.3, and 0.5), and $B_u$ values of LF (0.64 and $0.53Nm^3\;Kg^{-1}-VS_{added}$ for the S/I ratios of 0.1 and 0.3, respectively) at the lower S/I ratios of 0.1 and 0.3 exceeded the $B_{th}$ values ($0.418Nm^3\;Kg^{-1}-VS_{added}$). And also biodegradability ($B_u/B_{th}$) of LF sample were obtained as 152.07%, 122.67%, and 95.71% at the S/I ratios of 0.1, 0.3, and 0.5, respectively, and unreasonable $B_u/B_{th}$ values were presented at lower S/I ratios of 0.1 and 0.3. $B_u$ and $B_u/B_{th}$ of Mix sample showed a similar tendency with those of LF sample. Therefore, TH sample by thermal hydrolysis pretreatment showed lower anaerobic biodegradability than those of other samples (LF and Mix) and ultimate methane potentials of LF and Mix samples were overestimated in the lower S/I ratio of 0.1 and 0.3.

BMP 시험을 통한 최종메탄생산퍼텐셜 ($B_u$)의 측정은 바이오매스로부터 전환할 수 있는 바이오에너지 양을 추산하고 혐기소화조를 설계하는데 중요한 인자이다. 본 연구에서는 $B_u$의 측정에 있어 기질과 접종액의 비율 (S/I ratio)이 미치는 영향을 분석하기 위하여 기질의 유기물 특성이 다른 양돈 슬러리의 탈수여액 (LF), 양돈슬러지 탈수케이크의 열가수분해액 (TH), 탈수여액과 열가수분해액의 혼합액 (Mix)을 이용하여 BMP 시험을 실시하였으며, 각각의 시료의 이론적 메탄생산퍼텐셜 ($B_{th}$)과 혐기적 유기물 분해율을 구하여 비교하였다. TH 시료의 $B_u$는 S/I 비율 0.1, 0.3, 0.5에서 각각 0.27, 0.44, $0.46Nm^3\;Kg^{-1}-VS_{added}$로 나타났으며, 이론적메탄생산퍼텐셜 ($B_{th}$) 대비 최종메탄생산퍼텐셜 ($B_u$)의 비율 ($B_u/B_{th}$)로 나타낸 혐기적 유기물 분해율은 S/I 비율 0.1, 0.3, 0.5에서 각각 50.04, 82.46, 86.47%이었으며, LF 시료의 경우 S/I 비율 0.1, 0.3, 0.5에서 $B_u$은 각각 0.64, 0.53, $0.40Nm^3\;Kg^{-1}-VS_{added}$이었으며, 혐기적 유기물 분해율은 각각 152.07, 122.67, 95.71%로 나타났다. Mix 시료의 경우 최종 메탄생산 퍼텐셜과 혐기적 유기물 분해율에서 LF 시료와 유사한 경향을 보였다. 본 연구에서는 양돈슬러리의 BMP시험에서 S/I비율에 따라 상이한 최종 메탄생산 퍼텐셜이 나타나며, 낮은 S/I 비율에서 최종 메탄생산 퍼텐셜이 과대평가되었다.

Keywords

References

  1. Angelidaki, I and W. Sanders. 2004. Assessment of the anaerobic biodegradability of acropollutants. Rev. Environ. Sci. Biotechnol. 3(2):117. https://doi.org/10.1007/s11157-004-2502-3
  2. Angelidaki, I, and B.K. Ahring. 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biot. 37:808-812.
  3. APHA (American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed.
  4. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method ofr measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci. 40:401-407.
  5. Bougrier, C., J.P. Delgenes, and H. Carrere. 2008. Effects of thermal treatments on five different waste activated sludge samples solubilization, physical properties and anaerobic digestion. Chem. Eng. J. 139:236-244. https://doi.org/10.1016/j.cej.2007.07.099
  6. Boyle, W.C. 1976. Energy recovery from sanitary landfills-a review. In: Schlegel, H.G., and, J., Barnea (Eds.), Microbial Energy Conversion. Pergamon Press Oxford, 119-138.
  7. Chynoweth, D.P., C.E. Turick, J.M, Owens, D.E. Jer, and M.W. Peck. 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg. 5:95-111. https://doi.org/10.1016/0961-9534(93)90010-2
  8. Fernadez, B., P. Porrier, and R. Chamy. 2001. Effect of inoculum substrate ratio on the start up of solid waste anaerobic digesters. Water Sci. Technol. 44(4):103-108.
  9. Hansen, T.L., J.E. Schmidt., I. Angelidaki., E. Marca., J.C. Jansen., H. Mosbæk, and T.H. Christensen. 2004. Measurement of methane potentials of solid organic waste. Waste Manage. 24(4):393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  10. Hashimoto, A.G. 1989. Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biol. Waste. 28:247-255. https://doi.org/10.1016/0269-7483(89)90108-0
  11. Kim, S.H., H.C. Kim., C.H. Kim, and Y.M. Yoon. 2010. The measurement of biochemical methane potential in the several organic waste resources. Korean J. Soil Sci. Fert. 43(3):356-362
  12. Lawrence, A.W, and P.L. McCarty. 1967. Kinetics of methane fermentation in anaerobic waste treatment. Department of Civil Engineering, Stanford University, PaloAlto, California.
  13. Lay, J.J., Y.Y. Li, and T. Noike. 1998. Development of bacterial population and Methanogenic activity in a laboratory-scale landfill bioreactor. Water Res. 32:3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  14. Liu, C., B. Xiao., A. Dauta., G. Peng., S. Liu, and Z. Hu. 2009. Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Bioresour Technol. 100(24):6217-6222. https://doi.org/10.1016/j.biortech.2009.07.001
  15. Luste, S., S. Luostarinen, and M. Sillanpaa. 2009. Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat- processing industry. J. Hazard. Mater. 164:247-255. https://doi.org/10.1016/j.jhazmat.2008.08.002
  16. Martins, S.I.F.S., W.M.F. Jongen, and M.A.J.S. Boekel. 2001. A review of maillard reaction in food and implications to kinetic modelling. Trends food Sci. Technol. 11:364-373.
  17. MKE. 2008. The 3rd basic plan for the use and development of new-renewable energy (2009-2030) (in Korean).
  18. Mottet, A., J.P. Steyer., S. Deleris., F. Vedrinne., J. Chauzy, and H. Carrere. 2009. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochem. Eng. J. 46:169-175. https://doi.org/10.1016/j.bej.2009.05.003
  19. Neves, L., R. Oliveira, and M.M. Alves. 2004. Influence of inoculums activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem. 39(12):2019-2024. https://doi.org/10.1016/j.procbio.2003.10.002
  20. Owens, J.M, and D.P. Chynoweth. 1993. Biochemical methane potential of municipal solid-waste (MSW) components. Water Sci. Technol. 27(2):1-14. https://doi.org/10.1021/es00038a700
  21. Palatsi, J., J. Illa., F.X. Prenafeta-Boldú., M. Laureni., B. Fernandez., I. Angelidaki, and X. Flotats. 2010. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol. 101(7):2243-2251. https://doi.org/10.1016/j.biortech.2009.11.069
  22. Raposo, F., R. Borja., B. Rincon, and A.M. Jimenez. 2008. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenerg. 32:1235-1244. https://doi.org/10.1016/j.biombioe.2008.02.019
  23. Salminen, E., J. Einola, and J. Rintala. 2003. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poulty feather. Environ. Technol. 24:1079-1086. https://doi.org/10.1080/09593330309385648
  24. Shin, K.S., C.H. Kim., S.E. Lee, and Y.M. Yoon. 2011. Biochemical methane potential of agricultural waste biomass. Korea J. soil Sci. Fert. 44(5):903-915. https://doi.org/10.7745/KJSSF.2011.44.5.903
  25. orensen, A.H., M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Micro biol. biotechnol. 34:823-827.
  26. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
  27. Yoon, Y.M., C.H. Kim., Y.J. Kim, and H.T Pack. 2009. The economical evaluation of biogas production facility of pig waste. Korean J. Agricul. Manage. Policy 36(1):137-157.

Cited by

  1. Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse vol.46, pp.4, 2013, https://doi.org/10.7745/KJSSF.2013.46.4.296
  2. Effect of Organic Content on Anaerobic Biodegradability by Agricultural Waste Biomass vol.47, pp.3, 2014, https://doi.org/10.7745/KJSSF.2014.47.3.155
  3. Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.12
  4. A Study on the Biogasification of Municipal and Industrial Wastewater Sludge vol.15, pp.9, 2014, https://doi.org/10.14481/jkges.2014.15.9.5