DOI QR코드

DOI QR Code

Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip Culture

열처리와 경정배양을 이용한 바이러스 무병 사과 생산 시스템

  • Lee, Gunsup (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Jeong Hee (Apple Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Hyun Ran (Future & Creation Strategy Team, Rural Development Administration) ;
  • Shin, Il Sheob (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Shin, Juhee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Dae Hyun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 이건섭 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김정희 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 김현란 (농촌진흥청 미래창조전략팀) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 신주희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김대현 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2013.11.12
  • Accepted : 2013.11.25
  • Published : 2013.12.31

Abstract

In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid) were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol for the development of virus-free apple cultivars (Danhong, Hongan, Saenara, Summerdream). Apple plants were treated at $37^{\circ}C$ for 4 weeks and shoot tips were cultured in vitro. After heat treatment, the detection of apple viruses was performed by RT-PCR using virusspecific detection primers in new apple cultivars. With the heat treatments followed by in vitro shoot tip culture, the proportion of virus-free stocks of 'Danhong', 'Hongan', 'Saenara', and 'Summerdream' was 28%, 16%, 12%, and 12%, respectively. Taken together, this approach can be a good tool for production of virus-free apple stocks.

국내외적으로 ACLSV, ASGV, ApMV, ASSVd와 같은 바이러스 및 바이로이드 병의 발생으로 사과 과실의 생산량 감소와 기형적인 외형 등 많은 문제점들이 보고되었다. 하지만 사과 바이러스의 감염에 대한 방제 대책은 거의 알려진 바가 없는 실정이다. 따라서 본 논문에서는 사과 신품종인 '단홍', '홍안', '새나라', '썸머드림'을 분양하기에 앞서 바이러스 무병묘를 생산하는 시스템을 확립하고자 하였다. $37^{\circ}C$가 유지되는 항온 항습장치에서 4주간 열처리를 하였으며 기내에서 경정 배양을 하였다. 열처리된 각각의 사과 신품종들은 바이러스 진단 프라이머를 통해 RT-PCR을 수행하여 바이러스 진단을 수행하였다. 결과적으로 '단홍'은 28%의 바이러스 무병묘를 확보할 수 있었으며 '홍안'은 16%, '새나라'와 '썸머드림'은 12%의 확률로 바이러스 무병 사과를 확보할 수 있었다. 본 연구결과는 열처리 및 경정배양을 통해 사과 신품종에서 바이러스 무병묘 생산 시스템 구축이 가능함을 보여주었다.

Keywords

References

  1. Arai, S., Fukushima, C., Nakazawa, N. and Segawa, K. 1990. Susceptibility of apple root stock infected with apple chlorotic leaf spot virus to white root rot and violet root rot. Annu. Rep. Soc. Plant Protect. N. Jpn. 41: 92−93.
  2. Campbell, A. I. 1962. Apple virus inactivation by heat therapy and tip propagation. Nature 195: 520.
  3. El-Dougdoug, K. A., Osman, M., Abdelkader, H. S. and Dawoud, R. A. 2010. Elimination of Hop stunt viroid (HSVd) from infected peach and pear plants using cold therapy and chemotherapy. Aust. J. Basic Appl. Sci. 4: 54-60.
  4. Feng, C., Wang, R., Li, J., Wang, B., Yin, Z., Cui, Z., Li, B., Bi, W., Zhang, Z., Li, M. and Wang, Q. 2013. Production of pathogen-free horticultural crops by cryotherapy of in vitro-Grown shoot tips. Methods Mol. Biol. 994: 463-482.
  5. Gambino, G., Perrone, I. and Gribaudo, I. 2008. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 19: 520-525. https://doi.org/10.1002/pca.1078
  6. Hansen, A. and Lane, W. 1985. Elimination of apple chlorotic leaf spot virus from apple shoot cultures by ribavirin. Plant Dis. 69: 134-135.
  7. Hollings, M. 1965. Disease control through virus-free stock. Annu. Rev. Phytopathol. 3: 367-396. https://doi.org/10.1146/annurev.py.03.090165.002055
  8. Kim, D. H., Kim, H. R., Heo, S., Kim, S. H., Kim, M. A., Shin., I. S., Kim, J. H., Cho, K. H. and Hwang, J. H. 2010. Occurrence of Apple scar skin viroid and relative quantity analysis using real-time RT-PCR. Res. Plant Dis. 16: 247-253. (In Korean) https://doi.org/10.5423/RPD.2010.16.3.247
  9. Kim, D. H., Shim, H. K., Kwon, H. M., Hyun, J. W., Kim, K. S., Lee, J. K. and Lee, S. C. 2005. Production of virus-free stocks from citrus plant by the shoot-tip grafting and heat treatment. Korean J. Plant Biotech. 32: 45-50. https://doi.org/10.5010/JPB.2005.32.1.045
  10. Kim, H. R., Kim, J. S., Hwang, J. H., Lee, S. H., Choi, G. S. and Choi, Y. M. 2004. Influence of ACLSV-infection on fruit quality of "Hongro" apples. Res. Plant Dis. 10: 145-149. (In Korean) https://doi.org/10.5423/RPD.2004.10.2.145
  11. Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Nam, M., Kim, J. S., Choi, G. S., Cho, J. D., Cho, I. S. and Chung, B. N. 2011. Occurrence of virus diseases on major crops in 2010. Res. Plant Dis. 17: 334-341. (In Korean) https://doi.org/10.5423/RPD.2011.17.3.334
  12. Kinard, G., Scott, S. and Barnett, O. 1996. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RTPCR. Plant Dis. 80: 616-621. https://doi.org/10.1094/PD-80-0616
  13. Liu, P., Zhang, L., Zhang, H., Jiao, H. and Wu, Y. 2013. Detection and molecular variability of Apple stem grooving virus in Shaanxi, China. J. Phytopathol. 161: 445-449. https://doi.org/10.1111/jph.12083
  14. Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99: 81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
  15. Paduch-Cichal, E. and Kryczynski, S. 1987. A low temperature therapy and meristem-tip culture for eliminating four viroids from infected plants. J. Phytopathol. 118: 341-346. https://doi.org/10.1111/j.1439-0434.1987.tb00465.x
  16. Paprstein, F., Sedlak, J., Polak, J., Svobodova, L., Hassan, M. and Bryxiova, M. 2008. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tiss. Org. 94: 347-352. https://doi.org/10.1007/s11240-008-9342-8
  17. Savitri, W. D., Park, K. I., Jeon, S. M., Chung, M. Y., Han, J. S. and Kim, C. K. 2013. Elimination of Chrysanthemum stunt viroid (CSVd) from meristem tip culture combined with prolonged cold treatment. Hortic. Environ. Biotechnol. 54: 177-182. https://doi.org/10.1007/s13580-013-0141-8

Cited by

  1. Phylogenetic Analysis of Apple scar skin viroid Isolates in Korea vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.346
  2. Current occurrence of persimmon viroid and citrus viroid in persimmon in JellaNam-do and testing for viroid inactivation methods vol.42, pp.1, 2015, https://doi.org/10.5010/JPB.2015.42.1.43
  3. Elimination ofApple stem grooving virusfrom ‘Mansoo’ pear (Pyrus pyrifoliaL.) by an antiviral agent combined with shoot tip culture vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.391
  4. Efficiency of virus elimination in apple calli (cv. Hongro) derived from meristem culture of dormant buds vol.44, pp.4, 2017, https://doi.org/10.5010/JPB.2017.44.4.379