DOI QR코드

DOI QR Code

Change of Heating Value, pH and FT-IR Spectra of Charcoal at Different Carbonization Temperatures

  • Kwon, Sung-Min (Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University) ;
  • Jang, Jae-Hyuk (Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University) ;
  • Park, Sang-Bum (Korea Forest Research Institute) ;
  • Kim, Nam-Hun (Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University)
  • Received : 2013.08.22
  • Accepted : 2013.09.24
  • Published : 2013.09.25

Abstract

To understand transition characteristics from wood to charcoal, Quercus variabilis wood was carbonized at 200, 250, 300, 340, 540 and $740^{\circ}C$, respectively. Heating value, pH and surface property by FT-IR spectroscopy of the carbonized charcoal were investigated. Heating value and pH increased with increasing carbonization temperature from 4500 cal/g and 4.3 of the control wood to 8,000 cal/g and 9 of the charcoal carbonized at $740^{\circ}C$, respectively. From FT-IR spectroscopy, the peaks from O-H, C-H and C-O stretching disappeared during carbonization at 540 and $740^{\circ}C$. Aromatic skeletal vibration at near $1,506{\sim}1,593cm^{-1}$ was repidly increased until $540^{\circ}C$. These results suggest that the chemical and physical characteristics of wood components in cell wall can be easily changed by increasing carbonization temperature and the carbonization seem to be incomplete at temperature below $540^{\circ}C$.

Keywords

References

  1. Encinar, J. M., F. J. Beltran, A. Bernalte, A. Ramiro, and J. F. Gonzalez. 1996. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature Biomass and Bioenergy 11(5): 397-409.
  2. Encinar, J. M., J. F. Gonzalez, and J. Gonzalez. 2000. Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Processing Technology 68(3): 209-222. https://doi.org/10.1016/S0378-3820(00)00125-9
  3. Greil, P. 2001. Biomorphous ceramics from lignocellulosics. Journal of the European Ceramic Society 21: 105-118. https://doi.org/10.1016/S0955-2219(00)00179-5
  4. Jo, T. S., O. K. Lee, J. W. Choi, S. T. Cho, and S. K. Kim. 2009. Changes of chemical bond in woody charcoal from different carbonization temperatures. Journal of the Wood Science and Technology 37(1): 87-93.
  5. Kim, N. H. and R. B. Hanna. 2006. Morphological characteristics of Quercus variabilis charcoal prepared at different temperatures. Wood Science and Technology 40(5) : 392-401. https://doi.org/10.1007/s00226-005-0062-5
  6. Kwon, S. M. and N. H. Kim. 2006. Investigation of carbonization mechanism of wood (I). Journal of the Wood Science and Technology 34(3): 8-14.
  7. Kwon, S. M. and N. H. Kim. 2007. Investigation of carbonization mechanism of wood (II). Journal of the Wood Science and Technology 35(3): 45-52.
  8. Kwon S. M., G. J. Kwon, J. H. Jang, and N. H. Kim. 2012. Characteristics of charcoal in different carbonization temperatures. Journal of Forest Science 28(4): 263-267. https://doi.org/10.7747/JFS.2012.28.4.263
  9. Kwon, S. M., N. H. Kim, and D. S. Cha. 2009. An investigation on the characteristics of the wood cells during carbonization. Wood science and technology 43: 487-498. https://doi.org/10.1007/s00226-009-0245-6
  10. Mopoung, S. 2008. Surface image of charcoal and activited charcoal from banana peel. Journal of Microscopy Society of Thailand 22: 15-19.
  11. Phan, A. N., C. Ryu, V. N. Sharifi, and J. Swithenbank. 2008. Characterization of slow pyrolysis products from segregated wastes for energy production. Journal of Analytical and Applied Pyrolysis 81: 65-71. https://doi.org/10.1016/j.jaap.2007.09.001
  12. Qian, J. M., J. P. Wang, G. J. Qiao, and Z. H. Jin. 2004. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. Journal of the European Ceramic Society 24: 3251-3259. https://doi.org/10.1016/j.jeurceramsoc.2003.10.042
  13. Rhee, S. W. and Y. H. Cho. 2008. A study on characteristics of carbonization residue produced from woody biomass. Journal of Korea Solid Wastes Engineering Society 25(6): 533-539.
  14. Schwanninger, M., J. C. Rodriguesc, H. Pereirac, and B. Hinterstoisser. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 36: 23-40. https://doi.org/10.1016/j.vibspec.2004.02.003
  15. Sharma, R. K., J. B. Wooten, V. L. Baliga, X. Lin, W. G. Chan, and M. R. Hajaligol. 2004. Characterization of chars from pyrolysis of lignin. Fuel 83: 1469-1482. https://doi.org/10.1016/j.fuel.2003.11.015
  16. Wang, Z., J. Cao, and J. Wang. 2009. Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 84: 179-184. https://doi.org/10.1016/j.jaap.2009.02.001
  17. Yatagai, M., R. Ito, T. Ohira, and K. Oba. 1995. Effect of charcoal on purification of wastewater. Mokuzai Kakkaishi 41(4): 425-432.
  18. Zeriouh, A. and L. Belkbir. 1995. Thermal decomposition of a Moroccan wood under a nitrogen atmosphere. Thermochimica Acta 258: 243-248. https://doi.org/10.1016/0040-6031(94)02246-K

Cited by

  1. FT-IR spectral and thermal characterization of ancient charcoals - A tool to support archeological and historical data interpretation vol.457, 2017, https://doi.org/10.1016/j.quaint.2016.11.031
  2. Upgrading of the Hydrophobicity of Larix kaempferi and Liriodendron tulipifera via Torrefaction vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.070
  3. Hemicellulose structural changes during steam pretreatment and biogradation of Lentinus edodes 2017, https://doi.org/10.1016/j.arabjc.2017.12.022