DOI QR코드

DOI QR Code

Influence of Fluorinated Illite on Thermal, Antibiotic and Far-infrared Emission Properties of Polypropylene Non-woven Fibers

폴리프로필렌 부직포 섬유의 열, 항균 및 원적외선 방사 특성에 미치는 불소화 일라이트 첨가의 영향

  • Kim, Jinhoon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Seo, Kyeong-Won (Hyochang Corporation) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 김진훈 (충남대학교 공과대학 정밀응용화학과) ;
  • 임지선 (충남대학교 공과대학 정밀응용화학과) ;
  • 서경원 ((주)효창산업) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2012.08.21
  • Accepted : 2012.09.19
  • Published : 2013.01.25

Abstract

In this work, the thermal, antibiotic properties and far-infrared emissivity of fluorinated illite embedded polypropylene non-woven fibers (f-illite/PP fibers) were investigated in the presence of 0, 1, 3, 5 and 7 wt% illite powders. The thermal properties of f-illite/PP fibers were studied by thermogravimetric analysis (TGA). Their antibiotic properties were examined by Staphylococcus aureus and Klebsiella pneumoniae test. Their far-infrared emissivity was also investigated by Fourier transform infrared spectroscopy. From the experimental results, thermal, antibiotic properties and far-infrared emissivity of f-illite/PP fibers were improved by increasing fluorinated illite contents and the property values of 5 wt% f-illite/PP fibers were increased remarkably by about 10.3, 41.2 and 9.8% respectively in comparison with PP non-woven fibers having no fluorinated illite additive. This result was interpreted as the development of interfacial adhesion force between the polymer chains due to the fluorination of illite power.

본 연구는 폴리프로필렌 수지에 불소화된 일라이트를 함량별로 첨가하여 제조한 일라이트/폴리프로필렌(PP) 부직포의 열적 특성, 항균성, 원적외선 방사율을 고찰하고자 하였다. 불소화 일라이트 첨가 폴리프로필렌 섬유의 열적 특성은 열중량 분석을 사용하여 조사하였다. 그 항균 특성은 황색포도상구균과 폐렴간균의 균주 실험으로, 원적외선 방사율은 퓨리에 변환 적외분광법을 사용하여 알아보았다. 그 실험결과, 일라이트/PP 부직포 섬유의 열적 특성 및 항균성, 원적외선 방사율은 불소화 일라이트의 함량이 증가할수록 증가하였고, 특히 불소화 일라이트 5 wt% 함유 PP 부직포 섬유의 경우가 일라이트를 함유하지 않은 PP 부직포에 비해 각각 10.3, 41.2 및 9.8%로 크게 증가하였다. 이는 일라이트의 불소화로 인하여 고분자 사슬 분자 사이의 계면결합력의 향상 때문이라 판단된다.

Keywords

References

  1. S. Kim and A. M. Palomino, Appl. Clay Sci., 51, 491 (2011). https://doi.org/10.1016/j.clay.2011.01.017
  2. C. R. Reddy, A. P. Sardashti, and L. C. Simon, Compos. Sci. Technol., 70, 1674 (2010). https://doi.org/10.1016/j.compscitech.2010.04.021
  3. M. Alexandre and P. Dubois, Mater. Sci. Eng. R: Reports, 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  4. L. Besra, D. K. Sengupta, S. K. Roy, and P. Ay, Sep. Purif. Technol., 37, 231 (2004). https://doi.org/10.1016/j.seppur.2003.10.001
  5. M. Li and Z. Wu, Renew. Sust. Energ. Rev., 16, 2094 (2012). https://doi.org/10.1016/j.rser.2012.01.016
  6. B. Perret, B. Schartel, K. Sto${\beta}$, M. Ciesielski, J. Diederichs, M. Doring, J. Kramer, and V. Altstadt, Eur. Polym. J., 47, 1081 (2010).
  7. T. Orhan, N. A. Isitman, J. Hacaloglu, and C. Kaynak, Polym. Degrad. Stabil., 97, 273 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.12.020
  8. W. Jincheng, Z. Xiaoyu, H. Wenli, X. Nan, and P. Xingchen, Powder Technology, 221, 80 (2012). https://doi.org/10.1016/j.powtec.2011.11.006
  9. A. K. Mishra, S. Allauddin, R. Narayan, T. M. Aminabhavi, and K. V. S. N. Raju, Ceram. Int., 38, 929 (2012). https://doi.org/10.1016/j.ceramint.2011.08.012
  10. J. Birkenstock, M. Kleemeier, C. Vogt, M. Wendschuh, A. Hartwig, and R. X. Fischer, Appl. Clay Sci., 54, 144 (2011). https://doi.org/10.1016/j.clay.2011.07.021
  11. T. Cao, P. D. Fasulo, and W. R. Rodgers, Appl. Clay Sci., 49, 21 (2010). https://doi.org/10.1016/j.clay.2010.03.018
  12. I. M. Kang, H. S. Moon, Y. J. Kim, Y. G. Song, and W. P. Lee, Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, Cheongju, Korea, 2004.
  13. J. S. Im, I. J. Park, S. J. In, T. J. Kim, and Y. S. Lee, J. Fluorine Chem., 130, 1111 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  14. E. Jeong, J. W. Lim, K. W. Seo, and Y. S. Lee, J. Ind. Eng. Chem., 17, 77 (2011). https://doi.org/10.1016/j.jiec.2010.10.012
  15. Y. Park and G. A. Ayoko, J. Colloid Interface Sci., 354, 292 (2011). https://doi.org/10.1016/j.jcis.2010.09.068
  16. G. Carja, Y. Kameshima, A. Nakajima, C. Dranca, and K. Okada, Int. J. Antimicrob. Agents, 34, 534 (2009). https://doi.org/10.1016/j.ijantimicag.2009.08.008
  17. R. Sothornvit, J. W. Rhim, and S. I. Hong, J. Food Eng., 91, 468 (2009). https://doi.org/10.1016/j.jfoodeng.2008.09.026
  18. V. R. Sastri, Plastics in Medical Devices, 5, 55 (2010).
  19. N. Meng, N. L. Zhou, S. Q. Zhang, and J. Shen, Appl. Clay Sci., 42, 667 (2009). https://doi.org/10.1016/j.clay.2008.06.016
  20. B. C. Bai, J. G. Kim, J. S. Im, S. C. Jung, and Y. S. Lee, Carbon Lett., 12, 236 (2011). https://doi.org/10.5714/CL.2011.12.4.236
  21. H. R.Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, J. Ind. Eng. Chem., 18, 674(2012). https://doi.org/10.1016/j.jiec.2011.11.064
  22. H. R. Yu, E. Jeong, J. Kim, and Y. S. Lee, Polymer(Korea), 35, 47 (2011).
  23. M. Cwil, M. Kalisz, and P. Konarski, Appl. Surf. Sci., 255, 1334 (2008). https://doi.org/10.1016/j.apsusc.2008.05.012
  24. E. Jeong and Y. S. Lee, J. Ind. Eng. Chem., 22, 467 (2011).
  25. A. Marcin in, Prog. Polym. Sci., 27, 853 (2002). https://doi.org/10.1016/S0079-6700(02)00002-3
  26. S. Xie, E. H. Jones, Y. Shen, P. Hornsby, M. McAfee, T. McNally, R. Patel, H. Benkreira, and P. Coates, Mater. Lett., 64, 185 (2010). https://doi.org/10.1016/j.matlet.2009.10.042
  27. K. S. Santos, S. A. Liberman, M. A. S. Oviedo, and R. S. Mauler, Composites Part A, 40, 1199 (2009). https://doi.org/10.1016/j.compositesa.2009.05.009
  28. M. Han, J. Yun, H. I. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 18, 752 (2012). https://doi.org/10.1016/j.jiec.2011.11.122
  29. H. C. Kim, S. Jeon, H. I. Kim, Y. S. Lee, and M. H. Hong, Polymer(Korea), 36, 251 (2012).
  30. C. D. Doyle, J. Appl Polym Sci., 5, 285 (1961). https://doi.org/10.1002/app.1961.070051506
  31. S. J. Park and H. C. Kim, J. Polym. Sci. Part B: Polym. Phys., 39, 121 (2001). https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  32. W. H. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, Polym. Eng. Sci., 39, 756 (1999). https://doi.org/10.1002/pen.11464
  33. A. Hou, M. Zhou, and X. Wang, Carbohydr. Polym., 75, 328 (2009). https://doi.org/10.1016/j.carbpol.2008.07.032
  34. O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira, Immunity, 11, 443 (1999). https://doi.org/10.1016/S1074-7613(00)80119-3
  35. S. Hong, C. Lee, and J. Kim, Textile Coloration and Finishing, 22, 119 (2010).
  36. J. H. Park, M. H. Shim, and H. S. Shim, Key Eng. Mater., 321, 849 (2006). https://doi.org/10.4028/www.scientific.net/KEM.321-323.849