DOI QR코드

DOI QR Code

Comparison of Antioxidant and Physiological Properties of Jerusalem Artichoke Leaves with Different Extraction Processes

추출방법에 따른 돼지감자 잎의 항산화 및 생리활성 비교

  • Kim, Jae-Won (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Kim, Jong-Kyoun (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Song, In-Seong (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Kwon, Eun-Sung (Dept. of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Dept. of Food Science and Technology, Catholic University of Daegu)
  • 김재원 (대구가톨릭대학교 식품공학전공) ;
  • 김종규 (대구가톨릭대학교 식품공학전공) ;
  • 송인성 (대구가톨릭대학교 식품공학전공) ;
  • 권은성 (대구가톨릭대학교 식품공학전공) ;
  • 윤광섭 (대구가톨릭대학교 식품공학전공)
  • Received : 2012.09.17
  • Accepted : 2012.11.20
  • Published : 2013.01.31

Abstract

The physiological properties of water extracts from Jerusalem artichoke (Helianthus tuberosus L.) leaves (JAL) with different extraction processes (stirrer extraction, SE; reflux extraction, RE; autoclave extraction, AE; low temperature high pressure extraction, LTPE) were investigated. The freeze-dried powder yields of SE, RE, AE, and LTPE were 22.33%, 29.88%, 31.65, and 15.74%, respectively. AE showed the highest value of extract yield. The $a^*$ and $b^*$ values were higher in AE compared to other extracts. Total polyphenolics and flavonoids contents in AE was significantly higher than in other extracts. The amount of proanthocyanidin related substances were highest in LTPE (29.36 mg/g), followed by RE (21.57 mg/g), SE (20.35 mg/g), and AE (13.02 mg/g). The electron donating abilities of SE, RE, AE, and LTPE at a concentration of $500{\mu}g/mL$ (w/v) were 76.16%, 39.55%, 25.50%, and 12.59%, respectively. Reducing power for the four different processes was 1.79, 1.60, 1.51, and 1.17, respectively. Additionally the same tendency was observed with electron donating ability and reducing power for ABTS radical and nitrite scavenging abilities. AE and LTPE showed relatively high antioxidant activities. Alpha-glucosidase, xanthine oxidase, and angiotensin I-converting enzyme inhibitory activities of LTPE at a concentration of $500{\mu}g/mL$ (w/v) were somewhat higher than other extracts. Additionally, there was significantly higher or little lower inhibitory activity compared to the control group. In conclusion, we provided experimental evidence that extracts of JAL have potential as functional materials, and component analysis of JAL could be used as new cosmeceuticals. Also, LTPE is the superior method for the enhancement of biological activity.

돼지감자 잎의 활용 및 생리활성을 증가시킬 수 있는 적정 추출방법을 알아보고자 환류냉각, 상온교반, 가압가열 및 저온고압 추출법을 이용하여 추출한 돼지감자 잎 추출물의 생리활성을 비교하였다. 추출수율은 가압가열추출, 환류냉각추출, 상온교반추출, 저온고압추출 순으로 높은 수율을 나타내었다. 폴리페놀 함량은 상온교반추출 및 환류냉각추출의 경우 대등한 함량을 나타낸 반면 가압가열추출 및 저온고압추출에서는 유의적으로 높은 함량을 나타내었으며, 플라보노이드 함량은 가압가열추출 및 저온고압추출에서 높은 함량을 나타내었다. Proanthocyanidin 함량에서는 저온고압추출에서 가장 높은 함량이 검출된 반면 가압가열추출에서는 상온교반 및 환류냉각추출에 비해 낮은 함량을 나타내었다. 항산화 활성에서는 모든 추출물이 농도가 증가함에 따라 활성은 비례적으로 증가하였다. 가압가열추출 및 저온고압추출에서 유의적으로 높은 활성을 나타내었으며, ${\alpha}$-glucosidase, xanthine oxidase 및 angiotensin I-converting enzyme 저해활성에서는 저온고압추출물에서 우수한 활성을 나타내었다. 이러한 결과를 종합해 볼 때 가압가열 및 저온고압추출물이 소재 활용가치가 높을 것으로 사료되며 천연 항산화제 및 기능성 증진을 위한 소재로 이용 가능할 것으로 판단된다.

Keywords

References

  1. Hwang IT, Hwang JS, Lim HK, Park NJ. 2010. Biorefinery based on weeds and agricultural residues. Kor J Weed Sci 30: 340-360. https://doi.org/10.5660/KJWS.2010.30.4.340
  2. Go GS, Jeon US. 2003. Ferns, fern-allies and seed-bearing plants of Korea. Iljinsa, Seoul, Korea. p 659.
  3. Kim CG, Kim SI, Shin HK. 1993. Effect of fructooligosaccharide-inulin of Jerusalem artichoke on the growth of intestinal microorganisms of pig. Korean J Food Sci Technol 25: 395-399.
  4. Carabin IG, Flamm WG. 1999. Evaluation of safety of inulin and oligofructose as dietary fiber. Regul Toxicol Pharmacol 30: 268-282. https://doi.org/10.1006/rtph.1999.1349
  5. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. 2011. Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in Chang cells. J Korean Soc Food Sci Nutr 40: 1525-1531. https://doi.org/10.3746/jkfn.2011.40.11.1525
  6. Yuan X, Gao M, Xiao H, Tan C, Du Y. 2012. Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem 133: 10-14. https://doi.org/10.1016/j.foodchem.2011.09.071
  7. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010-3014. https://doi.org/10.1021/jf0115589
  8. Abdel-Hameed ESS. 2008. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem 114: 1271-1277.
  9. Sun B, Ricardo-da-Silva JM, Spranger I. 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46: 4267-4274. https://doi.org/10.1021/jf980366j
  10. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  11. Arabshahi-Delouee S, Urooj A. 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem 102: 1233-1240. https://doi.org/10.1016/j.foodchem.2006.07.013
  12. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radial cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  13. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  14. Kim KY, Nam KA, Kurihara H, Kim SM. 2008. Potent $\alpha$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007
  15. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3863.
  16. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  17. Cha JY, Jeong JJ, Kim YT, Seo WS, Yang HJ, Kim JS, Lee YS. 2006. Detection of chemical characteristics in Hamcho (Salicornia herbacea) according to harvest periods. J Life Sci 16: 683-690. https://doi.org/10.5352/JLS.2006.16.4.683
  18. Hwang JK, Kim CT, Hong SI, Kim CJ. 1994. Solubilization of plant cell walls by extrusion. J Korean Soc Food Nutr 23: 358-370.
  19. Jin L, Ha JH, Jeong MH, Chung EK, Chung AR, Kim JC, Ahn JH, Lee HY. 2009. Enhancement of the antioxidant and anticancer activities of Berberis koreana bark by using a low temperature and high-pressure extraction process. Korean J Food Sci Technol 41: 284-291.
  20. Han JG, Ha JH, Choi YB, Go JL, Kang DH, Lee HY. 2009. The comparison of extraction process for enhancement of immunomodulating activities of Ulva pertusa kjellman. Korean J Food Sci Technol 41: 380-385.
  21. Nicoli MC, Anese M, Parpinel M. 1999. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10: 94-100. https://doi.org/10.1016/S0924-2244(99)00023-0
  22. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2000. Review of non-enzymatic browning and antioxidant capacity in processed food. Trends Food Sci Technol 11: 340-346. https://doi.org/10.1016/S0924-2244(01)00014-0
  23. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  24. Jiratanan T, Liu RH. 2004. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). J Agric Food Chem 52: 2659-2670. https://doi.org/10.1021/jf034861d
  25. Osawa T. 1994. Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251.
  26. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. 2006. Physiocochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J Food Sci Technol 38: 331-336.
  27. Yamada T, Yamamoto M, Tanimara A. 1978. Studies on the formation of nitrosamines, 7: The effects of some polyphenols on nitrosation of diethylamine. J Food Hyg Soc Japan 19: 224-227. https://doi.org/10.3358/shokueishi.19.224
  28. Xu ML, Wang L, Hu JH, Wang MH. 2009. Antioxidant and $\alpha$-glucosidase inhibitory activities of some wild vegetable extracts. J Agric Food Chem 47: 4121-4125.
  29. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12: 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  30. Nishioka T, Kawabata J, Aoyama Y. 1998. Baicalein, an $\alpha$-glucosidase inhibitor from Scutellaria baicalensis. J Nat Prod 61: 1413-1415. https://doi.org/10.1021/np980163p
  31. Kim JE, Joo SI, Seo JH, Lee SP. 2009. Antioxidant and $\alpha$-glucosidase inhibitory effect of tartary buckwheat extract obtained by the treatment of different solvents and enzymes. J Korean Soc Food Sci Nutr 38: 989-995. https://doi.org/10.3746/jkfn.2009.38.8.989
  32. Hwang JY, Han JS. 2007. Inhibitory effects of Sasa borealis leaves extracts on carbohydrate digestive enzymes and postprandial hyperglycemia. J Korean Soc Food Sci Nutr 36: 989-994. https://doi.org/10.3746/jkfn.2007.36.8.989
  33. Kwon JW, Lee HK, Park HJ, Song JY. 2012. Physiological activities of Rubus coreanus Miq. extracts using different extraction methods. Korean J Food Cookery Sci 28: 1-8. https://doi.org/10.9724/kfcs.2012.28.1.025
  34. Kim KM, Suh HJ, Chung SH, Cho WD, Ma SJ. 1999. Chemical structure of angiotensin converting enzyme inhibitor isolated from onion flesh. Food Sci Biotechnol 8: 329-332.
  35. Kameda K, Takaku T, Okyada H, Kimyra Y, Okuda T, Hatano T, Agata I, Arichi S. 1987. Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J Nat Prod 50: 680-683. https://doi.org/10.1021/np50052a017
  36. Shouqin Z, Junjie Z, Changzhen W. 2004. Novel high pressure extraction technology. Int J Pharm 278: 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029

Cited by

  1. Effect of Extraction Methods on Antioxidant Activities of Mori ramulus vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1709
  2. Analysis of Nutritional Components and Physicochemical Properties of Hot-air Dried Jerusalem Artichoke (Helianthus tuberosus L.) Powder vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.73
  3. Antioxidant, Physiological Activities, and Acetylcholinesterase Inhibitory Activity of Portulaca oleracea Extracts with Different Extraction Methods vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.389
  4. Polyphenolic Compounds, Physiological Activities, and Digestive Enzyme Inhibitory Effect of Aster scaber Thunb. Extracts According to Different Extraction Processes vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1701
  5. Antioxidative and antimicrobial activities of Oenothera biennisextracted by different methods vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.233
  6. The Enzyme Inhibitory Activity of Ethanol Extracts Derived from Germinated Rough Rice (Oryza sativar L.) Treated by High Pressure vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.44
  7. Antioxidative and Antidiabetic Activities of Methanol Extracts from Different Parts of Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.128
  8. Physicochemical Analysis and Quality Characteristics of Jerusalem Artichoke and Mook Prepared with Jerusalem Artichoke Powder vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.635
  9. Antimicrobial Effects on Food-Borne Pathogens and the Antioxidant Activity of Torreya Nucifera Extract vol.26, pp.4, 2015, https://doi.org/10.7856/kjcls.2015.26.4.697
  10. Physiochemical Characteristics of Raw and Dried Jerusalem Artichoke Jangachi     vol.25, pp.5, 2015, https://doi.org/10.17495/easdl.2015.10.25.5.887
  11. Food Components and Antioxidant Activities of Dried Jerusalem Artichoke with White and Purple Colors vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1114
  12. 추출용매에 따른 천궁(Cnidium officinale Makino) 추출물의 생리활성 평가 vol.32, pp.1, 2015, https://doi.org/10.12925/jkocs.2015.32.1.170
  13. 밀싹 추출물이 MMP-1의 유전자 발현 억제효과 및 미백효과에 관한 연구 vol.33, pp.1, 2013, https://doi.org/10.12925/jkocs.2016.33.1.13
  14. 견우자의 생리활성 분석과 추출물로부터 항암 활성물질의 분리 vol.27, pp.2, 2017, https://doi.org/10.5352/jls.2017.27.2.225
  15. 쓴메밀 종자의 추출방법에 따른 루틴 및 퀘세틴 함량 비교 vol.49, pp.3, 2013, https://doi.org/10.9721/kjfst.2017.49.3.258
  16. 용매별 초석잠 추출물의 항산화 및 항당뇨 활성 vol.24, pp.5, 2013, https://doi.org/10.11002/kjfp.2017.24.5.615
  17. 추출방법에 따른 톳 추출물의 항산화 및 생리활성 특성 vol.24, pp.5, 2013, https://doi.org/10.11002/kjfp.2017.24.5.631
  18. 추출온도에 따른 이팝나무 과육 물 추출물의 항산화 및 항노화 활성 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1129
  19. 느릅나무 초임계 추출박 60% 주정추출물의 생리활성 vol.8, pp.5, 2013, https://doi.org/10.22156/cs4smb.2018.8.5.029
  20. 멜라노마 세포(B16F10)에서의 개망초 추출물을 이용한 미백효과에 관한 연구 vol.47, pp.1, 2013, https://doi.org/10.4014/mbl.1803.03017
  21. Phenolic Acids in Jerusalem Artichoke (Helianthus tuberosus L.): Plant Organ Dependent Antioxidant Activity and Optimized Extraction from Leaves vol.24, pp.18, 2019, https://doi.org/10.3390/molecules24183296
  22. 돼지감자 분말 첨가 발효유의 이화학적 특성 vol.37, pp.3, 2013, https://doi.org/10.22424/jmsb.2019.37.3.196
  23. Development of Mixed Tea Prepared with Roasted Mulberry and Peppermint Leaves vol.30, pp.5, 2013, https://doi.org/10.17495/easdl.2020.10.30.5.335
  24. Nutritional value, bioactivity, and application potential of Jerusalem artichoke ( Helianthus tuberosus L.) as a neotype feed resource vol.6, pp.4, 2013, https://doi.org/10.1016/j.aninu.2020.09.001