DOI QR코드

DOI QR Code

Simple ECEM Algorithms Using Function Values Only

  • Kim, Philsu (Department of Mathematics, Kyungpook National University) ;
  • Kim, Sang Dong (Department of Mathematics, Kyungpook National University) ;
  • Lee, Eunjung (Department of Computational Science and Engineering, Yonsei University)
  • Received : 2013.11.05
  • Accepted : 2013.12.04
  • Published : 2013.12.23

Abstract

In this paper, we improve the error corrected Euler method(ECEM) introduced in [11] by evaluating function values only at local nodes in each time interval. As a result, one can avoid computations of Jacobian matrices on each time interval so that the algorithms become simpler to implement in solving various class of time dependent differential equations numerically. The proposed ECEM formula resembles to the Runge-Kutta method in its representations but both methods have different characteristic properties.

Keywords

References

  1. J. C. Butcher, On Runge-Kutta processes of high order, Journal of the Australian Mathematical Society, 4(1964), 179-194. https://doi.org/10.1017/S1446788700023387
  2. J. C. Butcher Numerical Methods for Ordinary Differential Equations, New York: John Wiley and Sons(2003).
  3. G. Dahlquist, A special stability problem for linear multistep methods, BIT 3(1963), 27-43. https://doi.org/10.1007/BF01963532
  4. P. J. Davis, P. Rabinowitz Methods of Numerical Integration, Academic Press, New York(1975).
  5. E. Hairer, S.P Norsett, G. Wanner, Solving ordinary differential equations I, nonstiff problems, Springer, Berlin(1993).
  6. E. Hairer, G.Wanner, Solving ordinary differential equations. II Stiff and Differential- Algebraic Problems, Springer Series in Computational Mathematics, Springer(1996).
  7. A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R. S. Stepleman et al., eds, Scientific Computing(North-Holland, Amsterdam, 1983), 55-64
  8. F. Iavernaro, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Appl. Numer. Math., 28(1998), 107-126. https://doi.org/10.1016/S0168-9274(98)00039-7
  9. F. Iavernaro, F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations, SIAM J. Sci. Comput., 21(1999), 323-339. https://doi.org/10.1137/S1064827597325785
  10. L. G. Ixaru, Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Comm., 150(2003), 116-128. https://doi.org/10.1016/S0010-4655(02)00676-8
  11. P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. https://doi.org/10.1137/100808691
  12. S. D. Kim, X. Piao, D. H. Kim, P. Kim Convergence on error correction methods for solving initial value problems, J. Comput. Appl. Math., 236(2012), 4448-4461. https://doi.org/10.1016/j.cam.2012.04.015
  13. J. Kwon, S. D. Kim, X. Piao, P. Kim, A Chebyshev collocation method for a stiff initial value problem and its stability, Kyungpook Math. J., 51(2011), 435-456. https://doi.org/10.5666/KMJ.2011.51.4.435
  14. W. Liniger, R. A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal., 7(1970), 47-66. https://doi.org/10.1137/0707002
  15. A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comput., 28(1974), 145-162. https://doi.org/10.1090/S0025-5718-1974-0331793-2
  16. H. Ramos, R. Garcia-Rubio, Analysis ofa Chebyshev-based backward differentiation formulae and relation with Runge-Kutta collocation methods, Int. J. Comput. Math., 88(2011), 555-577. https://doi.org/10.1080/00207161003631877
  17. H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comp. Appl. Numer., 204(2007), 124-136. https://doi.org/10.1016/j.cam.2006.04.033
  18. H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(2007), 710-718. https://doi.org/10.1016/j.amc.2006.11.134
  19. H. H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Computer J., 5(1962/63), 329-330.
  20. L. F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18(1997), 1-22. https://doi.org/10.1137/S1064827594276424
  21. M.M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equations, Simul. Pract. Theory 5(1997), 333-344. https://doi.org/10.1016/S0928-4869(96)00011-0
  22. J. G. Verwer, E. J. Spee, J. G. Blom, W.H. Hundsdorfer, A second-order Rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput., 20(1999), 1456-1480. https://doi.org/10.1137/S1064827597326651
  23. J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798-817. https://doi.org/10.1093/imanum/drl040
  24. X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., 123(2001), 141-153. https://doi.org/10.1016/S0096-3003(00)00010-2

Cited by

  1. Error Control Strategy in Error Correction Methods vol.55, pp.2, 2015, https://doi.org/10.5666/KMJ.2015.55.2.301
  2. An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations vol.283, 2015, https://doi.org/10.1016/j.jcp.2014.11.040
  3. An error embedded method based on generalized Chebyshev polynomials vol.306, 2016, https://doi.org/10.1016/j.jcp.2015.11.021
  4. An Error Embedded Runge-Kutta Method for Initial Value Problems vol.56, pp.2, 2016, https://doi.org/10.5666/KMJ.2016.56.2.311
  5. A new approach to estimating a numerical solution in the error embedded correction framework vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1619-6