DOI QR코드

DOI QR Code

Fabrication and Properties of Nanostructured $3Ti-2Al_2O_3$ Composites by a Pulsed Current Activated Sintering Method

펄스전류 활성 소결법에 의한 나노구조의 $3Ti-2Al_2O_3$ 복합재료 제조 및 특성

  • Park, Na-Ra (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
  • 박나라 (전북대학교 신소재공학부 수소연료전지연구센터) ;
  • 손인진 (전북대학교 신소재공학부 수소연료전지연구센터)
  • Published : 2013.11.05

Abstract

Nanopowders of $TiO_2$ and Al were prepared from a high energy ball milling method to fabricate sintered $3Ti-2Al_2O_3$ composites with nanostructures. A dense nanocrystalline $3Ti-2Al_2O_3$ composite was consolidated by a pulsed current activated sintering method from the mechanically activated powder. Consolidation of dense $3Ti-2Al_2O_3$ composites with a relative density of up to 99% was accomplished under the combined contribution of a pulsed current and a mechanical pressure of 60 MPa. The hardness and fracture toughness of the fabricated composites were 1207 kg/mm2 and $7 MPa{\cdot}m^{1/2}$, respectively.

Keywords

References

  1. M. N. Rahaman and A. Yao, J. Am. Ceram. Soc. 90, 1965 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x
  2. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X
  3. T. Ahmed, M. Long, J. Siverstri. C. Ruiz, and H. J. Rack, A new modulus, biocompatible titanium alloy, Titanium 95 science and technology, 2, 1760 (1995).
  4. G. Farrar, Lancet 335, 747 (1990). https://doi.org/10.1016/0140-6736(90)90868-6
  5. J. P. Landsberg, Nature 360, 65 (1992). https://doi.org/10.1038/360065a0
  6. Y. Okazaki, K. Kyo, Y. Ito, and T Tateishi, J. Japan Inst. Metals 10, 1061 (1995).
  7. Ratner, Joffman, Schoen, Lemons, Biomaterials science, academic Press (1996).
  8. S. G. Steinemann, Corrosion of surgical Implants in-vivo and on-vitro Tests, Evaluation of Biomaterials, John Wiley & Sons Ltd., 1 (1980).
  9. S. Yumoto, Internation Journal of PIXE 4, 493 (1992).
  10. J. A. Davidson, A. K. Mishira, and R. A. Poggie, Biomed. Mat. Eng. 4, 231 (1994).
  11. L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, London (1993).
  12. P. Boutin, Presse Med. 79, 639 (1971).
  13. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  14. A. M. George, J. Iniguuze, L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  15. D. Hreniak, W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  16. Z. Fang and J. W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  17. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  18. I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh, and J. K. Yoon, Met. Mater. Int. 18, 115 (2012). https://doi.org/10.1007/s12540-012-0027-9
  19. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. I. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  20. W. Kim, N. R. Kim, I. Y. Ko, S. W. Cho, J. S. Park, and I. J. Shon, Met. Mater. Int. 17, 239 (2011). https://doi.org/10.1007/s12540-011-0409-4
  21. N. R. Park and I. J. Shon, Korean J. Met. Mater. 50, 961 (2012).
  22. C. Suryanarayana and M. G. Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  23. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  24. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  25. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  26. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  27. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  28. X. Q. Chen, C. L. Fu, and J. R. Morris, Intermetallics 18, 998 (2010). https://doi.org/10.1016/j.intermet.2010.01.027
  29. M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc. 7, 1965 (2007).