DOI QR코드

DOI QR Code

Research and Development Trends of Polyimide Based Material for Gas Separation

기체분리용 폴리이미드 소재의 연구개발동향

  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 김득주 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노.신소재융합공학과, 공학연구원)
  • Received : 2013.12.17
  • Accepted : 2013.12.24
  • Published : 2013.12.31

Abstract

Gas separation processes using polymeric membranes have been greatly developed during the last few decades due to high energy efficiency and economic advantages. To achieve optimum economic performance, gas separation membranes required high permeability and selectivity. So, a number of reports examining the various polymeric materials for gas separation membranes have been published. Among the studied materials, polyimide (PI), which exhibit high permselectivity for various gas pairs, high chemical resistance, thermal stability, and mechanical strength, have attracted much attention. This paper focuses on the basic principle of gas separation, preparation procedure of membrane along with the recent developments and research trends of PI based materials for gas separation.

고분자 분리막을 이용한 기체 분리막은 높은 에너지 효율, 경제적인 장점으로 최근 수년간 지속적으로 개발되어 왔다. 최적화된 경제적 성능을 얻기 위하여 기체 분리막은 높은 투과도와 선택도를 가져야 한다. 따라서 기체분리 분리막용으로 다양한 고분자를 시험한 연구 결과들이 보고되어 왔다. 다양한 소재 중, 폴리이미드는 다양한 기체인자에 대하여 높은 투과 선택도와 높은 화학적 열적 안정성, 그리고 물리적 안정성으로 많은 주목을 받아왔다. 따라서 본고에서는 기체분리용 폴리이미드 소재의 개발동향과 분리막의 제조방법, 기체 분리의 원리에 대하여 다루었다.

Keywords

References

  1. D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (2011).
  2. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane", Membrane Journal, 20, 267 (2010).
  3. H. J. Lee, M. J. Koh, D. J. Kim, and S. Y. Nam, "Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane", Membrane Journal, 22, 224 (2012).
  4. J. I. Choi, C. H. Jung, S. H. Han, H. B. Park, and Y. M. Lee, "Thermally rearranged (TR) poly (benzoxazole- co-pyrrolone) membranes tuned for high gas permeability and selectivity", J. Membr. Sci., 349, 358 (2010). https://doi.org/10.1016/j.memsci.2009.11.068
  5. H. B. Park, S. H. Han, C. H. Jung, Y. M. Lee, and A. J. Hill, "Thermally rearranged (TR) polymer membranes for $CO_{2}$ separation", J. Membr. Sci., 359, 11 (2010). https://doi.org/10.1016/j.memsci.2009.09.037
  6. S. Li, H. Jin Jo, S. Hoon Han, C. Hoon Park, S. Kim, P. M. Budd, and Y. Moo Lee, "Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation", J. Membr. Sci., 434, 137 (2013). https://doi.org/10.1016/j.memsci.2013.01.011
  7. Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, "The strategies of molecular architecture and modification of polyimide-based membranes for $CO_{2}$ removal from natural gas-A review", Prog. in Polym. Sci., 34, 561 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.004
  8. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  9. P. Bernardo, E. Drioli, and G. Golemme, "Membrane Gas Separation: A Review/State of the Art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  10. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  11. S. H. Jacobson, "Molecular modeling studies of polymeric gas separation and barrier materials: structure and transport mechanisms", Polym. Advan. Technol., 5, 724 (1994). https://doi.org/10.1002/pat.1994.220051105
  12. M. Heuchel, D. Hofmann, and P. Pullumbi, "Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions", Macromolecules, 37, 201 (2004). https://doi.org/10.1021/ma035360w
  13. K. Tanaka, T. Kawai, H. Kita, K.-i. Okamoto, and Y. Ito, "Correlation between gas diffusion coefficient and positron annihilation lifetime in polymers with rigid polymer chains", Macromolecules, 33, 5513 (2000). https://doi.org/10.1021/ma992051q
  14. L. Zhang, Y. Xiao, T.-S. Chung, and J. Jiang, "Mechanistic understanding of $CO_{2}$-induced plasticization of a polyimide membrane: A combination of experiment and simulation study", Polymer, 51, 4439 (2010). https://doi.org/10.1016/j.polymer.2010.07.032
  15. Y. J. Cho and H. B. Park, "High performance polyimide with high internal free volume elements", Macromolecul. Rapid Comm., 32, 579 (2011). https://doi.org/10.1002/marc.201000690
  16. D. T. Clausi and W. J. Koros, "Formation of defect- free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000). https://doi.org/10.1016/S0376-7388(99)00276-8
  17. I. C. Omole, D. A. Bhandari, S. J. Miller, and W. J. Koros, "Toluene impurity effects on $CO_{2}$ separation using a hollow fiber membrane for natural gas", J. Membr. Sci., 369, 490 (2011). https://doi.org/10.1016/j.memsci.2010.12.035
  18. L. Wan, X. a. Zhou, F. Huang, and L. Du, "Synthesis and properties of novel polytriazoleimides derived from 1, 2, 3-triazole-containing diamines and aromatic dianhydrides", Polym. Advan. Technol., 23, 1092 (2012). https://doi.org/10.1002/pat.2021
  19. B. Kraftschik, W. J. Koros, J. R. Johnson, and O. Karvan, "Dense film polyimide membranes for aggressive sour gas feed separations", J. Membr. Sci., 428, 608 (2013). https://doi.org/10.1016/j.memsci.2012.10.025
  20. L. Cui, W. Qiu, D. R. Paul, and W. J. Koros, "Responses of 6FDA-based polyimide thin membranes to $CO_{2}$ exposure and physical aging as monitored by gas permeability", Polymer, 52, 5528 (2011). https://doi.org/10.1016/j.polymer.2011.10.008
  21. Y. Xiao and T.-S. Chung, "Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and $CO_{2}$ capture", Energ. Environ. Sci., 4, 201 (2011). https://doi.org/10.1039/c0ee00278j
  22. M. L. Chua, Y. C. Xiao, and T.-S. Chung, "Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes", J. Membr. Sci., 415, 375 (2012).
  23. X. Chen, D. Rodrigue, and S. Kaliaguine, "Diaminoorganosilicone APTMDS: A new cross-linking agent for polyimides membranes", Sep. Purif. Technol., 86, 221 (2012). https://doi.org/10.1016/j.seppur.2011.11.008
  24. H. J. Yen, S. M. Guo, J. M. Yeh, and G. S. Liou, "Triphenylamine based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications", Journal of Polymer Science Part A: Polymer Chemistry, 49, 16 (2011).
  25. H. Wang, D. R. Paul, and T.-S. Chung, "Surface Modification of Polyimide Membranes by Diethylenetriamine (DETA) Vapor for H2 purification and moisture effect on gas permeation", J. Membr. Sci., 430, 223 (2013). https://doi.org/10.1016/j.memsci.2012.12.008
  26. Y. Chen, Q. Zhang, W. Sun, X. Lei, and P. Yao, "Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel ($A_{2}+B_{2}B+B_{2}$)-type method", J. Membr. Sci., 450, 138 (2014). https://doi.org/10.1016/j.memsci.2013.09.003
  27. X. Ma, R. Swaidan, Y. Belmabkhout, Y. Zhu, E. Litwiller, M. Jouiad, I. Pinnau, and Y. Han, "Synthesis and gas transport properties of hydroxyl- functionalized polyimides with intrinsic microporosity", Macromolecules, 45, 3841 (2012). https://doi.org/10.1021/ma300549m
  28. C. G. Bezzu, M. Carta, A. Tonkins, J. C. Jansen, P. Bernardo, F. Bazzarelli, and N. B. McKeown, "A Spirobifluorene based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation", Adv. Mater., 24, 5930 (2012). https://doi.org/10.1002/adma.201202393
  29. R. Swaidan, X. Ma, E. Litwiller, and I. Pinnau, "High pressure pure-and mixed-gas separation of $CO_{2}$/$CH_{4}$ by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity", J. Membr. Sci., 447, 387 (2013). https://doi.org/10.1016/j.memsci.2013.07.057
  30. S. Kanehashi, M. Kishida, T. Kidesaki, R. Shindo, S. Sato, T. Miyakoshi, and K. Nagai, "$CO_{2}$ separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid", J. Membr. Sci., 430, 211 (2013). https://doi.org/10.1016/j.memsci.2012.12.003
  31. P. Iyer, G. Iyer, and M. Coleman, "Gas transport properties of polyimide POSS nanocomposites", J. Membr. Sci., 358, 26 (2010). https://doi.org/10.1016/j.memsci.2010.04.023
  32. H. Karkhanechi, H. Kazemian, H. Nazockdast, M. R. Mozdianfard, and S. M. Bidoki, "Fabrication of Homogenous Polymer zeolite Nanocomposites as Mixed Matrix Membranes for Gas Separation", Chem. Eng. & Technol., 35, 885 (2012). https://doi.org/10.1002/ceat.201100236
  33. S. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, J. K. J. Balkus, I. H. Musselman, and J. P. Ferraris, "Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation", Ind. Eng. Chem. Res., 52, 6991 (2013). https://doi.org/10.1021/ie400149e
  34. A. C. Lua and Y. Shen, "Preparation and characterization of polyimide-silica composite membranes and their derived carbon-silica composite membranes for gas separation", Chem. Eng. J., 220, 441 (2013). https://doi.org/10.1016/j.cej.2012.11.140
  35. S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, "Asymmetric membrane based on $Matrimid^{(R)}$ and polysulphone blends for enhanced permeance and stability in binary gas ($CO_{2}$/$CH_{4}$) mixture separations", Sep. Purif. Technol., 75, 15 (2010). https://doi.org/10.1016/j.seppur.2010.07.004
  36. A. L. Khan, X. Li, and I. F. J. Vankelecom, "SPEEK/Matrimid blend membranes for $CO_{2}$ separation", J. Membr. Sci., 380, 55 (2011). https://doi.org/10.1016/j.memsci.2011.06.030
  37. J. Han, W. Lee, J. M. Choi, R. Patel, and B.-R. Min, "Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation", J. Membr. Sci., 351, 141 (2010). https://doi.org/10.1016/j.memsci.2010.01.038
  38. M. Frycova, P. Sysel, M. Kocirik, L. Brabec, P. Hrabanek, O. Prokopova, B. Bernauer, and A. Zikanova, "Mixed matrix membranes based on 3-aminopropyltriethoxysilane endcapped polyimides and silicalite-1", J. Appl. Polym. Sci., 124, E233 (2012). https://doi.org/10.1002/app.36466
  39. Y. Shen and A. C. Lua, "Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)-s ilica nanocomposite membranes for gas separation", Chem. Eng. J., 188, 199 (2012). https://doi.org/10.1016/j.cej.2012.01.043
  40. T. Suzuki and Y. Yamada, "Effect of thermal treatment on gas transport properties of hyperbranched polyimide silica hybrid membranes", J. Membr. Sci., 417, 193 (2012).
  41. L. Liang, Q. Gan, and P. Nancarrow, "Composite ionic liquid and polymer membranes for gas separation at elevated temperatures", J. Membr. Sci., 450, 407 (2014). https://doi.org/10.1016/j.memsci.2013.09.033
  42. M. A. Aroon, A. F. Ismail, M. M. Montazer- Rahmati, and T. Matsuura, "Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes", J. Membr. Sci., 364, 309 (2010). https://doi.org/10.1016/j.memsci.2010.08.023
  43. P. Li and M. R. Coleman, "Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications", Eur. Polym. J., 49, 482 (2013). https://doi.org/10.1016/j.eurpolymj.2012.11.016
  44. D. Gnanasekaran and B. S. R. Reddy, "Cost effective poly (urethane-imide)-POSS membranes for environmental and energy-related processes", Clean Technol. Envir., 15, 383 (2013). https://doi.org/10.1007/s10098-012-0500-7
  45. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for $CO_{2}$/$CH_{4}$ separation", J. Membr. Sci., 379, 468 (2011). https://doi.org/10.1016/j.memsci.2011.06.019
  46. W. Yuan, H. Chen, R. Chang, and L. Li, "Synthesis and characterization of high performance NaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition", Desalination, 273, 343 (2011). https://doi.org/10.1016/j.desal.2011.01.044
  47. S. Kanehashi, H. Gu, R. Shindo, S. Sato, T. Miyakoshi, and K. Nagai, "Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane", J. Appl. Polym. Sci., 128, 3814 (2013). https://doi.org/10.1002/app.38572
  48. X. Y. Chen, O. G. Nik, D. Rodrigue, and S. Kaliaguine, "Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for $CO_{2}$/$CH_{4}$ separation", Polymer, 53, 3269 (2012). https://doi.org/10.1016/j.polymer.2012.03.017
  49. F. Dorosti, M. R. Omidkhah, M. Z. Pedram, and F. Moghadam, "Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation", Chem. Eng. J., 171, 1469 (2011). https://doi.org/10.1016/j.cej.2011.05.081
  50. S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, "Asymmetric $Matrimid^{(R)}$[$Cu_{3}(BTC)_{2}$] mixed-matrix membranes for gas separations", J. Membr. Sci., 362, 478 (2010). https://doi.org/10.1016/j.memsci.2010.07.005
  51. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_{2}$/$CH_{4}$ separation", J. Membr. Sci., 413, 48 (2012).
  52. C. Ma and W. J. Koros, "Ester-Cross-linkable Composite Hollow Fiber Membranes for $CO_{2}$ Removal from Natural Gas", Ind. Eng. Chem. Res., 52, 10495 (2013). https://doi.org/10.1021/ie303531r
  53. M. Askari, T. Yang, and T.-S. Chung, "Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising $\beta$-Cyclodextrin", J. Membr. Sci., 423, 392 (2012).
  54. O. C. David, D. Gorri, K. Nijmeijer, I. Ortiz, and A. Urtiaga, "Hydrogen separation from multicomponent gas mixtures containing CO, $N_{2}$ and $CO_{2}$ using Matrimid asymmetric hollow fiber membranes", J. Membr. Sci., 419, 49 (2012).
  55. C.-C. Chen, W. Qiu, S. J. Miller, and W. J. Koros, "Plasticization-resistant hollow fiber membranes for $CO_{2}$/$CH_{4}$ separation based on a thermally crosslinkable polyimide", J. Membr. Sci., 382, 212 (2011). https://doi.org/10.1016/j.memsci.2011.08.015
  56. S.-H. Choi, J. C. Jansen, F. Tasselli, G. Barbieri, and E. Drioli, "In-line formation of chemically cross-linked $P84^{(R)}$ co-polyimide hollow fibre membranes for $H_{2}$/$CO_{2}$ separation", Sep. Purif. Technol., 76, 132 (2010). https://doi.org/10.1016/j.seppur.2010.09.031
  57. A. Y. Alentiev and Y. P. Yampolskii, "Meares equation and the role of cohesion energy density in diffusion in polymers", J. Membr. Sci., 206, 291 (2002). https://doi.org/10.1016/S0376-7388(01)00777-3