DOI QR코드

DOI QR Code

Well-designed rectangular cavity resonator for FMR experiment

  • Kim, Sang-Il (Department of Materials Science and Engineering, Korea University) ;
  • You, Chun-Yeol (Department of Physics, Inha University) ;
  • Park, Seung-Young (Division of Materials Science, Korea Basic Science Institute)
  • Published : 2013.08.31

Abstract

The unloaded quality factor of the cavity resonator is the ratio between the stored energy of the cavity resonator to the power loses in the cavity resonator. The homemade rectangular cavity resonator in Xband shows higher unloaded quality factor compare with standard cavity resonator in the $TE_{102}$ mode. Because the inner walls of rectangular cavity resonator are treated through high quality polishing and high purity Au plating. Also the inner walls are made by printed circuit board which has thin Cu foil, two problems such as mechanical vibration and thermal expansion can be solved by minimizing unwanted eddy current. Through the ferromagnetic resonance measurement by using our rectangular cavity resonator, we can be obtained reasonable values of resonance frequency and linewidth by using NiFe thin film. As a result, the Gilbert damping constant from the experimental result is in good agreement with the typical value of damping parameter of the NiFe thin film.

Keywords

References

  1. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O''Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, J. Appl. Phys. 85 (1999) 5828-5833. https://doi.org/10.1063/1.369932
  2. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, Y. Osada, J. Appl. Phys. 91 (2002) 5246-5249. https://doi.org/10.1063/1.1459605
  3. D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M.-C. Cyrille, O. Redon, B. Dieny, Nat. Mater. 6 (2007) 447-453. https://doi.org/10.1038/nmat1905
  4. S. Kim, J. Moon, W. Kim, K. Lee, Curr. Appl. Phys. 11 (2011) 61-64. https://doi.org/10.1016/j.cap.2010.06.019
  5. C. Kittel, Phys. Rev. 73 (1948) 155-161. https://doi.org/10.1103/PhysRev.73.155
  6. M. Farle, Rep. Prog. Phys. 61 (1998) 755-826. https://doi.org/10.1088/0034-4885/61/7/001
  7. L. Liu, T. Moriyama, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 106 (2011) 036601. https://doi.org/10.1103/PhysRevLett.106.036601
  8. L. Kraus, Z. Frait, Czech. J. Phys. B 21 (1971) 979-982.
  9. M.J. Hurben, C.E. Patton, J. Appl. Phys. 83 (1998) 4344-4365. https://doi.org/10.1063/1.367194
  10. K.D. Sossmeier, F. Beck, R.C. Gomes, L.F. Schelp, M. Carara, J. Phys. D 43 (2010) 055003. https://doi.org/10.1088/0022-3727/43/5/055003
  11. J.R. Fermin, A. Azevedo, F.M. de Aguiar, B. Li, S.M. Rezende, J. Appl. Phys. 85 (1999) 7316-7320. https://doi.org/10.1063/1.369355
  12. D.S. Rodbell, Phys. Rev. Lett. 13 (1964) 471-474. https://doi.org/10.1103/PhysRevLett.13.471
  13. S. Mizukami, Y. Ando, T. Miyazaki, Jpn. J. Appl. Phys. 40 (2001) 580-585. https://doi.org/10.1143/JJAP.40.580
  14. M. Oogane, T. Wakitani, S. Yakata, R. Yilgin, Y. Ando, A. Sakuma, T. Miyazaki, Jpn. J. Appl. Phys. 45 (2006) 3889-3891. https://doi.org/10.1143/JJAP.45.3889
  15. G.D. Fuchs, J.C. Sankey, V.S. Pribiag, L. Qian, P.M. Braganca, A.G.F. Garcia, E.M. Ryan, Zhi-Pan Li, O. Ozatay, D.C. Ralph, R.A. Buhrman, Appl. Phys. Lett. 91 (2007) 062507. https://doi.org/10.1063/1.2768000
  16. J.-M.L. Beaujour, W. Chen, A.D. Kent, J.Z. Sun, J. Appl. Phys. 99 (2006) 08N503. https://doi.org/10.1063/1.2151832
  17. N. Fujita, N. Inaba, F. Kirino, S. Igarashi, K. Koike, H. Kato, J. Magn. Magn. Mater. 320 (2008) 3019-3022. https://doi.org/10.1016/j.jmmm.2008.08.012
  18. S.J. Yuan, L. Wang, R. Shan, S.M. Zhou, Appl. Phys. A 79 (2004) 701-705.
  19. R. Yilgin, M. Oogane, S. Yakata, Y. Ando, T. Miyazaki, IEEE Trans. Magn. 41 (2005) 2799-2801. https://doi.org/10.1109/TMAG.2005.854832
  20. S. Mizukami, Y. Ando, T. Miyazaki, Phys. Rev. B 66 (2002) 104413. https://doi.org/10.1103/PhysRevB.66.104413
  21. T.L. Gilbert, IEEE Trans. Magn. 40 (2004) 3443-3449. https://doi.org/10.1109/TMAG.2004.836740
  22. S.K. De, Rev. Sci. Instrum. 58 (1987) 133. https://doi.org/10.1063/1.1139541
  23. L. Andreozzi, C. Autiero, F. Zulli, M. Giordano, J. Microw. Optoelectron. 4 (2005) 55.
  24. D.M. Pozar, Microwave Engineering, second ed., John Wiley & Sons, New York, 1998 (Chapter 6.7).
  25. http://www.bruker-biospin.com/epr_res_standard.html.
  26. D.L. Mills, S.M. Rezende. Spin Dynamics in Confined Magnetic Structures II, vol. 87, Springer, 2003, pp. 27-59.
  27. K. Kobayashi, Nabuyuki Inaba, N. Fujita, Y. Sudo, T. Tanaka, M. Ohtake, M. Futamoto, F. Kirino, IEEE Trans. Magn. 45 (2009) 2541-2544. https://doi.org/10.1109/TMAG.2009.2018862
  28. B.K. Kuanr, R.E. Camley, Z. Celinski, J. Magn. Magn. Mater. 286 (2005) 276-281. https://doi.org/10.1016/j.jmmm.2004.09.080
  29. J. Ben Youssef, N. Vukadinovic, D. Billet, M. Labrune, Phys. Rev. B 69 (2004) 174402. https://doi.org/10.1103/PhysRevB.69.174402

Cited by

  1. Optimization of the Gilbert damping constant by annealing CoFeB films sandwiched by Ta, Ru, and Pd layers vol.65, pp.10, 2013, https://doi.org/10.3938/jkps.65.1611
  2. Resonant cavity mode dependence of anomalous and inverse spin Hall effect vol.115, pp.17, 2014, https://doi.org/10.1063/1.4855915
  3. Gd3Ga5O12 기판위에 성장된 Y3Fe5O12 박막의 열처리 조건에 따른 강자성 공명 특성 연구 vol.25, pp.12, 2013, https://doi.org/10.3740/mrsk.2015.25.12.703
  4. Theory and Design of a Cylindrical Ferrite Resonator Antenna Using ${{\mathrm {HE}}}_{ {11\delta }}$ Mode Splitting Behavior vol.64, pp.12, 2013, https://doi.org/10.1109/tap.2016.2623486
  5. A Theoretical Model for Frequency Response of a Cylindrical Resonator Antenna With the ${HE}_{11\delta }$ Mode Splitting Behavior vol.65, pp.4, 2013, https://doi.org/10.1109/tap.2017.2670442
  6. Characteristics Calculation of Ferrite Material Using Frequency Tunable Resonator vol.53, pp.4, 2013, https://doi.org/10.1109/tmag.2016.2638802