DOI QR코드

DOI QR Code

Properties and Pulsed Current Activated Consolidation of Nanostuctured $MgSiO_3-MgAl_2O_4$ Composites

  • Shon, In-Jin (Chonbuk National University, Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College) ;
  • Du, Song-Lee (Chonbuk National University, Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College) ;
  • Doh, Jung-Mann (Korea Institute of Science and Technology, Interface Control Research Center) ;
  • Yoon, Jin-Kook (Korea Institute of Science and Technology, Interface Control Research Center)
  • Published : 2013.09.20

Abstract

Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The simultaneous synthesis and consolidation of nanostuctured $MgAl_2O_4-MgSiO_3$ composites from milled 2MgO, $Al_2O_3$ and $SiO_2$ powders was investigated by the pulsed current activated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Highly dense nanostructured $MgAl_2O_4-MgSiO_3$ composites were produced with a simultaneous application of 80 MPa pressure and a pulsed current of 2000A within 1min. The fracture toughness of $MgAl_2O_4-Mg_2SiO_4$ composites sintered from $60mol%MgO-20mol%Al_2O_3-20mol%SiO_2$ powders milled for 4 h was $3.2MPa{\cdot}m^{1/2}$. The fracture toughness of $MgAl_2O_4-MgSiO_3$ composite is higher than that of monolithic $MgAl_2O_4$.

Keywords

References

  1. S. Anappan, L. J. Berchmans, and C. O. Augustin, Mater. Lett. 58, 2283 (2004). https://doi.org/10.1016/j.matlet.2004.01.033
  2. C. Baudin, R. Martinez, and P. Pena, J. Am. Ceram. Soc. 78, 1857 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08900.x
  3. P. Hing, J. Mater. Sci. 11, 1919 (1976). https://doi.org/10.1007/BF00708270
  4. M. Sherif El-Eskandarany, J. Alloys Comd. 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  5. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Mater. 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  6. K. Niihara, A. Nikahira, Advanced Structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).
  7. S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  8. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  9. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  10. I. J. Shon, H. J. Wang, C. Y. Suh, S. W. Cho, and W. B. Kim, Korean J. Met. Mater. 49, 374 (2011).
  11. F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, and J. C. Liepce, Mater. Sci. Eng. A 262, 279 (1999). https://doi.org/10.1016/S0921-5093(98)01017-X
  12. I. J. Shon, B. R. Kim, J. M. Doh, J. K. Yoon, and K. D. Woo, J. Alloys Compd. 489, L4 (2010). https://doi.org/10.1016/j.jallcom.2009.09.040
  13. M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005). https://doi.org/10.1021/cr030697h
  14. J. Jung, S. Kang, Scripta Mater. 56, 561 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.026
  15. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. Y. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  16. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  17. N. R. Park, I. Y. Ko, J. M. Doh, J. K. Yoon, and I. J. Shon, Journal of Ceramic Processing Research 12, 660 (2011).
  18. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  19. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  20. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  21. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  22. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  23. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermo Chemical Properties of Inorganic Substances, p.1167, Springer-Verlag, New York (1991).
  24. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
  25. I. J. Shon, S. M. Kwak, J. M. Doh, B. J. Park, J. K. Yoon, Res. Chem. Intermed. (in press).

Cited by

  1. Pulsed Current Activated Synthesis and Consolidation of Nanostructured MoSi2–NbSi2 Composite and Its Mechanical Properties vol.55, pp.2, 2013, https://doi.org/10.2320/matertrans.m2013341
  2. Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties vol.24, pp.4, 2013, https://doi.org/10.3740/mrsk.2014.24.4.180
  3. Simultaneous Synthesis and Consolidation of Nanostructured MgSiO3–Mg3Al2Si3O12 Composite and Its Mechanical Properties vol.55, pp.7, 2013, https://doi.org/10.2320/matertrans.m2014018
  4. 급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성 vol.24, pp.9, 2014, https://doi.org/10.3740/mrsk.2014.24.9.495
  5. Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating vol.25, pp.1, 2015, https://doi.org/10.3740/mrsk.2015.25.1.48