DOI QR코드

DOI QR Code

Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin

  • Kim, Hyun-Joo (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Yong, Hae In (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Park, Sanghoo (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Choe, Wonho (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Jo, Cheorun (Department of Animal Science and Biotechnology, Chungnam National University)
  • Published : 2013.09.30

Abstract

This study aimed to evaluate the use of a dielectric barrier discharge (DBD) plasma system to improve the safety of pork loins. When pork loin was exposed to DBD plasma with the input gases He and $He+O_2$, the population of Escherichia coli was reduced by 0.26 and 0.50 log cycles following a 5-min treatment and by 0.34 and 0.55 log units following a 10-min treatment, respectively. That of Listeria monocytogenes was also reduced from 0.17 to 0.35 and 0.43 to 0.59 log cycles when the samples were exposed to DBD for 5 and 10 min using He and $He+O_2$, respectively. The pH and $L^*$-values (lightness) of the samples decreased significantly with DBD plasma treatment, but $a^*$- (redness) and $b^*$-values (yellowness) exhibited no obvious changes. Lipid oxidation, measured by TBARS values, was greater in samples with $He+O_2$ than in other samples. Significant reductions in sensory quality parameters (appearance, color, odor, acceptability, etc.) were observed in DBD-treated samples. These results indicate that the DBD plasma system has potential for use in sanitizing pork loins by inactivation of foodborne pathogens, although the effect was limited. In order to meet market requirements, however, a method to overcome sensory deterioration of pork loins should be developed and applied.

Keywords

References

  1. J.N. Sofos, Meat Sci. 78 (2008) 3-13. https://doi.org/10.1016/j.meatsci.2007.07.027
  2. World Health Organization. http://www.who.int/mediacentre/factsheets/fs237/en/index.html.
  3. T. Aymrich, P.A. Picouet, J.M. Monfort, Meat Sci. 78 (2008) 114-129. https://doi.org/10.1016/j.meatsci.2007.07.007
  4. F. Devlieghere, L. Vermeiren, J. Debevere, Int. Dairy J. 14 (2004) 273-285.
  5. S. Deng, R. Ruan, C.K. Mok, G. Huang, X. Lin, P. Chen, J. Food Sci. 72 (2007) M62-M66. https://doi.org/10.1111/j.1750-3841.2007.00275.x
  6. H. Yun, B. Kim, S. Jung, Z.A. Kruk, D.B. Kim, W. Choe, C. Jo, Food Control 21 (2010) 1182-1186. https://doi.org/10.1016/j.foodcont.2010.02.002
  7. A. Bogaerts, E. Neyts, R. Gijbels, V. Mullen, Spectrochim. Acta Part B 57 (2002) 609-658. https://doi.org/10.1016/S0584-8547(01)00406-2
  8. L.F. Gaunt, C.B. Beggs, G.E. Georghiou, IEEE Trans. Plasma Sci. 34 (2006) 1257-1269. https://doi.org/10.1109/TPS.2006.878381
  9. T.C. Montie, K. Kelly Wintenberg, J.R. Roth, IEEE Trans. Plasma Sci. 28 (2000) 41-50. https://doi.org/10.1109/27.842860
  10. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. von Woedtke, R. Brandenburg, T. von den Hagen, K.D. Weltmann, J. Phys. D Appl. Phys. 44 (2011) 013002. https://doi.org/10.1088/0022-3727/44/1/013002
  11. K. Lee, K.H. Paek, W.T. Ju, Y. Lee, J. Microbiol. 44 (2006) 269-275.
  12. M. Moreau, N. Orange, M.G.J. Feuilloley, Biotechnol. Adv. 26 (2008) 610-617. https://doi.org/10.1016/j.biotechadv.2008.08.001
  13. J.A. Imlay, Annu. Rev. Microbiol. 57 (2003) 395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
  14. G. Isbary, J. Heinlin, T. Shimizu, J.L. Zimmermann, G. Morfill, H.U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Br. J. Dermatol. 167 (2012) 404-410. https://doi.org/10.1111/j.1365-2133.2012.10923.x
  15. G. Isbary, G. Morfill, H.U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 163 (2010) 78-82.
  16. H.P. Song, B. Kim, J.H. Choe, S. Jung, S.Y. Moon, W. Choe, C. Jo, Food Microbiol. 26 (2009) 432-436. https://doi.org/10.1016/j.fm.2009.02.010
  17. Y. Sun, Y. Qiu, A. Nie, X. Wang, IEEE Trans. Plasma Sci. 35 (2007) 1496-1500. https://doi.org/10.1109/TPS.2007.905947
  18. G. Fridman, A.D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V.N. Vasilets, H. Ayan, G. Friedman, Plasma Process. Polym. 4 (2007) 370-375. https://doi.org/10.1002/ppap.200600217
  19. B. Kim, H. Yun, S. Jung, Y. Jung, H. Jung, W. Choe, C. Jo, Food Microbiol. 28 (2011) 9-13. https://doi.org/10.1016/j.fm.2010.07.022
  20. H.J. Lee, H. Jung, W. Choe, J.S. Ham, J.H. Lee, C. Jo, Food Microbiol. 28 (2011) 1468-1471. https://doi.org/10.1016/j.fm.2011.08.002
  21. H.J. Lee, S. Jung, H. Jung, S. Park, W. Choe, J.S. Ham, C. Jo, J. Anim. Sci. Technol. 54 (2012) 191-198. https://doi.org/10.5187/JAST.2012.54.3.191
  22. J.G. Birmingham, IEEE Trans. Plasma Sci. 32 (2004) 1526-1531. https://doi.org/10.1109/TPS.2004.832609
  23. Y. Ma, G.J. Zhang, X.M. Shi, G.M. Xu, Y. Yang, IEEE Trans. Plasma Sci. 36 (2008) 1615-1620. https://doi.org/10.1109/TPS.2008.917165
  24. L. Marsili, S. Espie, J.G. Anderson, S.J. Macgregor, Radiat. Phys. Chem. 65 (2002) 507-513. https://doi.org/10.1016/S0969-806X(02)00367-5
  25. S. Hury, D.R. Vidal, F. Desor, J. Pelletier, T. Lagarde, Lett. Appl. Microbiol. 26 (1998) 417-421. https://doi.org/10.1046/j.1472-765X.1998.00365.x
  26. B. Gweon, D.B. Kim, S.Y. Moon, W. Choe, Curr. Appl. Phys. 9 (2009) 625-628. https://doi.org/10.1016/j.cap.2008.06.001
  27. T. Maisch, T. Shimizu, Y.F. Li, J. Heinlin, S. Karrer, G. Morfill, J.L. Zimmermann, PLoS One 7 (2012). e34610. https://doi.org/10.1371/journal.pone.0034610
  28. X. Deng, J. Shi, M.G. Kong, IEEE Trans. Plasma Sci. 34 (2006) 1310-1316. https://doi.org/10.1109/TPS.2006.877739
  29. A. Fernandez, E. Noriega, A. Thompson, Food Microbiol. 33 (2012) 24-29.
  30. NIAS RDA, National Institute of Animal Science, Suwon, Korea, 2007.
  31. A. Frohling, J. Durek, U. Schnabel, J. Ehlbeck, J. Bolling, O. Schluter, Innov. Food Sci. Emerg. Technol. 16 (2012) 381-390. https://doi.org/10.1016/j.ifset.2012.09.001
  32. E. Soffels, Y. Sakiyama, D.B. Graves, IEEE Trans. Plasma Sci. 36 (2008) 1441-1457. https://doi.org/10.1109/TPS.2008.2001084
  33. M. Korachi, C. Gurol, N. Aslan, J. Electrost. 68 (2010) 508-512. https://doi.org/10.1016/j.elstat.2010.06.014
  34. R.A. Mancini, M.C. Hunt, Meat Sci. 71 (2005) 100-121. https://doi.org/10.1016/j.meatsci.2005.03.003
  35. S.Y. Cheng, C.W.M. Yuen, C.W. Kan, K.K.L. Cheuk, W.A. Daoud, P.L. Lam, W.Y.I. Tsoi, Vacuum 84 (2010) 1466-1470. https://doi.org/10.1016/j.vacuum.2010.01.012
  36. S.Y. Moon, D.B. Kim, B. Gweon, W. Choe, H.P. Song, C. Jo, Thin Solid Films 517 (2009) 4272-4275. https://doi.org/10.1016/j.tsf.2009.02.018
  37. L. Ragni, A. Berardinelli, L. Vannini, C. Montanari, F. Sirri, M.E. Guerzoni, A. Guarnieri, J. Food Eng. 100 (2010) 125-132. https://doi.org/10.1016/j.jfoodeng.2010.03.036
  38. H.J. Kim, J.S. Ham, K. Kim, J.H. Ha, S.D. Ha, C. Jo, Asian Australas. J. Anim. Sci. 23 (2010) 1112-1117.
  39. J.W. Lee, J.H. Kim, J.H. Kim, S.H. Oh, J.H. Seo, C.J. Kim, S.H. Cheong, M.W. Byun, J. Korean Soc. Food Sci. Nutr. 34 (2005) 729-733. https://doi.org/10.3746/jkfn.2005.34.5.729
  40. S.G. Joshi, M. Cooper, A. Yost, M. Paff, U.K. Ercan, G. Fridman, G. Friedman, A. Fridman, A.D. Brooks, Antimicrob. Agents Chemother. 55 (2011) 1053-1062. https://doi.org/10.1128/AAC.01002-10
  41. H. Liu, K. Chen, L. Yang, Y. Zhou, Appl. Surf. Sci. 254 (2008) 1815-1821. https://doi.org/10.1016/j.apsusc.2007.07.152
  42. W.W. Nawar, Food Chemistry, second ed., Marcel Dekker, New York, 1985, pp. 139-244. Revised and expanded.
  43. S.P. Kochhar, Food Taints and Off-Flavours, second ed., Blackie Academic & Professional, London, 1996, pp. 168-225.
  44. P. Basaran, N. Basaran-Akgul, L. Oksuz, Food Microbiol. 25 (2008) 626-632. https://doi.org/10.1016/j.fm.2007.12.005
  45. H.J. Kim, A. Jang, J.S. Ham, S.G. Jeong, J.N. Ahn, M.W. Byun, C. Jo, J. Anim. Sci. Technol. 49 (2007) 515-522. https://doi.org/10.5187/JAST.2007.49.4.515
  46. H.J. Kim, M. Kang, C. Jo, CNU J. Agric. Sci. 39 (2012) 341-347. https://doi.org/10.7744/cnujas.2012.39.3.341

Cited by

  1. Effect of Inactivating Salmonella Typhimurium in Raw Chicken Breast and Pork Loin Using an Atmospheric Pressure Plasma Jet vol.55, pp.6, 2013, https://doi.org/10.5187/jast.2013.55.6.545
  2. Evaluation of the Treatment of Both Sides of Raw Chicken Breasts with an Atmospheric Pressure Plasma Jet for the Inactivation of Escherichia coli vol.11, pp.8, 2013, https://doi.org/10.1089/fpd.2013.1718
  3. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas vol.32, pp.None, 2013, https://doi.org/10.1142/s2010194514603184
  4. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma vol.25, pp.4, 2013, https://doi.org/10.1007/s10068-016-0189-1
  5. Understanding the Role of Plasma Technology in Food Industry vol.9, pp.5, 2013, https://doi.org/10.1007/s11947-016-1699-9
  6. The effect of aging on the quality of Semimembranosus muscle from Hanwoo vol.43, pp.1, 2016, https://doi.org/10.7744/kjoas.20160008
  7. Applications of cold plasma technology for microbiological safety in meat industry vol.64, pp.None, 2013, https://doi.org/10.1016/j.tifs.2017.04.005
  8. Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure-A Review vol.11, pp.3, 2013, https://doi.org/10.1007/s11947-017-2042-9
  9. Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products vol.55, pp.3, 2013, https://doi.org/10.1007/s13197-017-3020-y
  10. Effects of Cold Plasma on Food Quality: A Review vol.7, pp.1, 2013, https://doi.org/10.3390/foods7010004
  11. Recent Advances in the Application of Cold Plasma Technology in Foods vol.9, pp.None, 2013, https://doi.org/10.1146/annurev-food-030117-012517
  12. Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples vol.8, pp.10, 2018, https://doi.org/10.3390/app8101939
  13. Mechanism Underlying Green Discolouration of Myoglobin Induced by Atmospheric Pressure Plasma vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-28096-4
  14. Electron characterization in weakly ionized collisional plasmas: from principles to techniques vol.4, pp.1, 2019, https://doi.org/10.1080/23746149.2018.1526114
  15. Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on Chemical and Antioxidant Properties of Peanut vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/3702649
  16. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.00622
  17. Photocatalytic effects on the quality of pork packed in the package combined with TiO2coated nonwoven fabrics vol.42, pp.3, 2019, https://doi.org/10.1111/jfpe.12993
  18. Optimization and influence of multi-hollow surface dielectric barrier discharge plasma operating conditions on the physical quality of peanut vol.73, pp.5, 2013, https://doi.org/10.1140/epjd/e2019-90616-0
  19. Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasma-treated water brine vol.9, pp.1, 2013, https://doi.org/10.1038/s41598-019-50351-5
  20. Effect of in‐package atmospheric cold plasma discharge on microbial safety and quality of ready‐to‐eat ham in modified atmospheric packaging during storage vol.85, pp.4, 2013, https://doi.org/10.1111/1750-3841.15072
  21. Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study vol.86, pp.9, 2013, https://doi.org/10.1128/aem.02619-19
  22. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products vol.4, pp.2, 2013, https://doi.org/10.22175/mmb.11180
  23. Dielectric-Barrier-Discharge Jet Treated Flexible Supercapacitors with Carbon Cloth Current Collectors of Long-Lasting Hydrophilicity vol.167, pp.11, 2013, https://doi.org/10.1149/1945-7111/aba4e5
  24. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review vol.9, pp.10, 2020, https://doi.org/10.3390/foods9101435
  25. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment vol.12, pp.21, 2020, https://doi.org/10.3390/su12218981
  26. Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin vol.10, pp.None, 2013, https://doi.org/10.1038/s41598-020-58199-w
  27. Optimization of decontamination conditions for Aspergillus flavus inoculated to military rations snack and physicochemical properties with atmospheric cold plasma vol.40, pp.6, 2020, https://doi.org/10.1111/jfs.12850
  28. Non-thermal plasma: An advanced technology for food industry vol.26, pp.8, 2013, https://doi.org/10.1177/1082013220929474
  29. Effect of Cold Plasma on Meat Cholesterol and Lipid Oxidation vol.9, pp.12, 2013, https://doi.org/10.3390/foods9121786
  30. Enrichment of nitrite in onion powder using atmospheric pressure plasma and egg whites for meat curing vol.135, pp.None, 2013, https://doi.org/10.1016/j.lwt.2020.110050
  31. Nonthermal plasma‐activated water: A comprehensive review of this new tool for enhanced food safety and quality vol.20, pp.1, 2013, https://doi.org/10.1111/1541-4337.12667
  32. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications vol.61, pp.4, 2013, https://doi.org/10.1080/10408398.2020.1743967
  33. Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System vol.14, pp.3, 2013, https://doi.org/10.1007/s11947-021-02590-6
  34. Simultaneous effect of cold plasma and MAP on the quality properties of mixed nuts snack during storage vol.45, pp.4, 2013, https://doi.org/10.1111/jfpp.15381
  35. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products vol.20, pp.3, 2013, https://doi.org/10.1111/1541-4337.12740
  36. High hydrogen peroxide concentration-low exposure time of plasma-activated water (PAW): A novel approach for shelf-life extension of Asian sea bass (Lates calcarifer) steak vol.74, pp.None, 2013, https://doi.org/10.1016/j.ifset.2021.102861
  37. Improving the lipid oxidation of beef patties by plasma-modified essential oil/protein edible composite films vol.154, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.112662
  38. Changes in quality characteristics of southern bluefin tuna (Thunnus maccoyii) during refrigerated storage and their correlation with color stability vol.154, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.112715
  39. Degradation of contaminants in plasma technology: An overview vol.424, pp.no.pa, 2013, https://doi.org/10.1016/j.jhazmat.2021.127390