DOI QR코드

DOI QR Code

Effect of Lanthanum Doping on the Structural, Ferroelectric, and Strain Properties of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-free Ceramics

  • Dinh, Thi Hinh (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Yoon, Chang-Ho (School of Materials Science and Engineering, University of Ulsan) ;
  • Malik, Rizwan Ahmed (School of Materials Science and Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Tran, Vu Diem Ngoc (School of Materials Science and Technology, Hanoi University of Science and Technology)
  • Received : 2012.10.08
  • Accepted : 2013.01.28
  • Published : 2013.04.15

Abstract

To clarify the effect of A-site donor doping on the phase transition and the strain enhancement, we investigated the crystal structure, as well as the piezoelectric, ferroelectric and electric-field-induced strain (EFIS) properties of La-doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) ceramics. Similarly to our previous studies on BNKT doped with B-site donors such as Nb and Ta, La doping was found to induce a ferroelectric-to-nonpolar (FE-NP) phase transition, leading to a large enhancement in EFIS just after the transition. The result provides strong evidence that a close relationship exists between the Goldschumidt's tolerance factor and the FE-NP transition in BNKT, which has been observed in B-site-donor or isovalent impurity-doped BNKT.

Keywords

References

  1. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  2. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 111 (2007).
  3. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. G. A. Smolenskii, Sov. Phys. Solid State 1, 1562 (1959).
  5. S. E. Park and S. J. Chung, Proceedings of the 9th IEEE International Symposium, ISAF'94, 265 (1994).
  6. G. O. Jones and P. A. Thomas, Acta Cryst. Section B 58, 168 (2002). https://doi.org/10.1107/S0108768101020845
  7. I. Pronin, P. Syrnikov, V. Isupov and N. Zaitseva, Ferroelectrics 25, 395 (1980). https://doi.org/10.1080/00150198008207029
  8. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236
  9. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Japan. J. Appl. Phys. 38, 5564 (1999). https://doi.org/10.1143/JJAP.38.5564
  10. K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  11. S. T. Zhang, A. B. Kounga, E. Aulback, H. Ehrenberg and J. Rodel, Appl. Phys. Lett. 91, 112906 (2007). https://doi.org/10.1063/1.2783200
  12. W. Jo, T. Granzow, E. Aulbach, J. Rodel and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009). https://doi.org/10.1063/1.3121203
  13. J. Kling, X. Tan, W. Jo, H. J. Kleebe, H. Fuess and J. Rodel, J. Am. Ceram. Soc. 93, 2452 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
  14. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellio, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010). https://doi.org/10.1107/S0021889810038264
  15. W. Jo and J. Rodel, Appl. Phys. Lett. 99, 042901 (2011). https://doi.org/10.1063/1.3615675
  16. Y. Hiruma, H. Nagata and T. Takenaka, J. Appl. Phys. 104, 124106 (2008). https://doi.org/10.1063/1.3043588
  17. N. B. Do, H. B. Lee, D. T. Le, S. K. Jeong, I. W. Kim, W. P. Tai and J. S. Lee, Curr. Appl. Phys. 11, S134 (2011). https://doi.org/10.1016/j.cap.2011.03.044
  18. A. Ullar, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee, and I. W. Kim. Curr. Appl. Phys. 10, 1174 (2010). https://doi.org/10.1016/j.cap.2010.02.006
  19. I. K. Hong, H. S. Han, C. H. Yoon, H. N. Ji, W. P. Tai, and J. S. Lee, J. Intell. Mater. Syst. Struct., doi: 10.1177/1045389X12447986.
  20. V. M. Goldschumidt, S. N. Videnskaps-Akad (Oslo, I. Mat.-Nat. KI., 1926), p. 8.
  21. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullar and I. W. Kim, Sens. Actuators, A 158, 84 (2010). https://doi.org/10.1016/j.sna.2009.12.027
  22. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullar and I. W. Kim, Jpn. J. Appl. Phys. 49, 041054 (2010).
  23. J. S. Lee, K. N. Pham, H. S. Han, H. B. Lee and V. D. N. Tran, J. Korean Phys. Soc. 60, 212 (2012). https://doi.org/10.3938/jkps.60.212
  24. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang, J. S. Lee, and I. W. Kim, Trans. Elect. Electron. Mater. 12, 64 (2011). https://doi.org/10.4313/TEEM.2011.12.2.64
  25. K. N. Pham, A. Hussain, C. W. Ahn, I. W. Kim, S. J. Jeong and J. S. Lee, Mater. Lett. 64, 2219 (2010). https://doi.org/10.1016/j.matlet.2010.07.048
  26. H. S. Han, C. W. Ahn, I. W. Kim, A. Hussain and J. S. Lee, Mater. Lett. 70, 98 (2012). https://doi.org/10.1016/j.matlet.2011.11.068
  27. H. S. Han, N. B. Do, K. N. Pham, H. D. Jang, V. D. N. Tran, W. P. Tai and J. S. Lee, Ferroelectrics 421, 88 (2011). https://doi.org/10.1080/00150193.2011.594733
  28. H. Y. Tian, K. W. Kwok, H. L. W. Chan and C. E. Bukley, J. Mater. Sci. 42, 9750 (2007). https://doi.org/10.1007/s10853-007-2005-z
  29. A. Herabut and A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03219.x
  30. M. Hammer and M. Hoffmann, J. Electroceramics 2, 75 (1998). https://doi.org/10.1023/A:1009954822076
  31. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976)
  32. G. Fan, W. Lu, X. Wang and F. Liang, Appl. Phys. Lett. 91, 202908 (2007). https://doi.org/10.1063/1.2815918
  33. K.Wang, A. Hussain, W. Jo and J. Rodel, J. Am. Ceram. Soc. 95, 2241 (2012). https://doi.org/10.1111/j.1551-2916.2012.05162.x
  34. V. Q. Nguyen, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn and J. S. Lee, J. Alloys Compd. 511, 237 (2012). https://doi.org/10.1016/j.jallcom.2011.09.043

Cited by

  1. Bi0.5(Na0.82K0.18)0.5TiO3 세라믹스의 소결거동 및 압전 특성에 대한 과잉의 CuO 첨가 효과 vol.27, pp.6, 2013, https://doi.org/10.4313/jkem.2014.27.6.372
  2. Ergodicity and nonergodicity in La-doped Bi1/2(Na0.82K0.18)1/2TiO3 relaxors vol.66, pp.7, 2015, https://doi.org/10.3938/jkps.66.1077
  3. Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition vol.66, pp.8, 2013, https://doi.org/10.3938/jkps.66.1317
  4. Enhanced Piezoelectric Properties of Lead-Free La and Nb Co-Modified Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 Ceramics vol.25, pp.6, 2013, https://doi.org/10.3740/mrsk.2015.25.6.288
  5. Microstructural and Ferroelectric Properties of Bi0.5(Na,K)0.5TiO3-Based Modified by Bi0.5Li0.5TiO3 Lead-Free Piezoelectric Ceramics vol.56, pp.9, 2013, https://doi.org/10.2320/matertrans.ma201553
  6. Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics vol.25, pp.10, 2015, https://doi.org/10.3740/mrsk.2015.25.10.566
  7. Ultrahigh strain response with fatigue-free behavior in (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics vol.48, pp.47, 2013, https://doi.org/10.1088/0022-3727/48/47/472001
  8. Large Field-Induced Strain Properties of Sr(K0.25Nb0.75) O3-Modified Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Piezoelectric Ceramics vol.45, pp.5, 2013, https://doi.org/10.1007/s11664-016-4445-1
  9. Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics vol.45, pp.5, 2013, https://doi.org/10.1007/s11664-016-4448-y
  10. Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics vol.68, pp.12, 2013, https://doi.org/10.3938/jkps.68.1439
  11. Composition dependence of electric-field-induced structure of Bi1/2(Na1−xKx)1/2TiO3 lead-free piezoelectric ceramics vol.119, pp.23, 2013, https://doi.org/10.1063/1.4953641
  12. Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol-gel method vol.30, pp.3, 2013, https://doi.org/10.1007/s10854-018-0550-7
  13. Mechanical and Electrical Properties of La3+ Modified BNKZT Ceramics vol.798, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/kem.798.188
  14. Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics vol.30, pp.20, 2019, https://doi.org/10.1007/s10854-019-02218-8
  15. Structural, ferroelectric, pyroelectric, and dielectric study of Bi0.5Na0.5TiO3 ceramics synthesized with precursors obtained by the sol-gel method and doped with lant vol.11, pp.6, 2021, https://doi.org/10.1063/5.0051792