DOI QR코드

DOI QR Code

Application of Microbial Fertilizer for Eco-friendly Production in Raphanus sativus L. and Brassica campestris L.

무와 배추의 친환경 재배를 위한 미생물 제제의 시용

  • Bae, Eun Ji (Major in Horticultural Science, Mokpo National University) ;
  • Han, NaRae (Mokpo National University Nature Resource Institute) ;
  • Kim, Sung Un (Major in Horticultural Science, Mokpo National University) ;
  • Kwon, Hwi Seung (Major in Horticultural Science, Mokpo National University) ;
  • Lim, Seung Hyeon (Major in Horticultural Science, Mokpo National University) ;
  • Seo, One (Major in Horticultural Science, Mokpo National University) ;
  • Kim, Ye Ji (Major in Horticultural Science, Mokpo National University) ;
  • Son, Dong Hyuck (Major in Horticultural Science, Mokpo National University) ;
  • Na, Haeyoung (Major in Horticultural Science, Mokpo National University)
  • 배은지 (목포대학교 원예과학과) ;
  • 한나래 (목포대학교 자연자원개발연구소) ;
  • 김성운 (목포대학교 원예과학과) ;
  • 권휘승 (목포대학교 원예과학과) ;
  • 임승현 (목포대학교 원예과학과) ;
  • 서원 (목포대학교 원예과학과) ;
  • 김예지 (목포대학교 원예과학과) ;
  • 손동혁 (목포대학교 원예과학과) ;
  • 나해영 (목포대학교 원예과학과)
  • Received : 2013.10.30
  • Accepted : 2013.12.16
  • Published : 2013.12.25

Abstract

This study was conducted to evaluate the effects of microbial and conventional chemical fertilizers on the growth of the radish(Raphanus sativus L.) and Chinese cabbage(Brassica campestris L.). Chemical fertilizer, microbial fertilizer, and combined one of them were applied after transplantation. Subsequently, microbial fertilizer was applied every 3 days. At 5 weeks after transplantation, plants were harvested for measurement of weight and length of the aboveground and underground parts. Fresh weight of the underground part in radish was greater in the combined application of chemical and microbial fertilizer (148.9g) than those of the chemical fertilizer(112.8g) or the microbial fertilizer(143.6g). Application of microbial fertilizer(160.3g) was more effective than that of chemical fertilizer(111.1g) on fresh weight of the aboveground part in radish. Fresh weight of the aboveground part in Chinese cabbage was greater in the combined application of chemical and microbial fertilizer(316.6g) than those of chemical fertilizer(225.7g) or microbial fertilizer(232.5g). Application of microbial fertilizer($2735.9cm^2$) was more effective than that of the chemical fertilizer($2387.5cm^2$) on the leaf area in Chinese cabbage. However, the largest increase in plant growth was found using the combined application of the chemical and microbial fertilizer. These data suggest that microbial fertilizer can be used to replace conventional chemical fertilizer as an eco-friendly fertilizer. Furthermore, the combined application of the chemical and microbial fertilizer greatly improves the growth of radish plants. These results suggest a new fertilization method to produce vigorous breeding materials in radish and Chinese cabbage.

미생물제제 및 화학비료 시비에 따른 무와 배추의 생육 변화를 조사하기 위해 지상부와 지하부의 길이, 엽면적, 그리고 중량을 측정하였다. 시비 종류에 따른 무의 지하부 생체중은 미생물제제와 화학비료의 혼합 시비에서 148.9g으로 가장 높아 화학비료 처리구(112.8g)와 비교하여 약 1.3배 증가하였으며, 지상부의 생체중 역시 미생물제제와 화학비료의 혼합 시비 처리구(160.3g)에서 화학비료 처리구(111.1g)와 비교해 약 1.4배 증가하였다. 미생물제제와 화학비료를 혼합하여 처리하였을 때 생육이 가장 왕성하였으나 미생물제제 처리구도 화학비료 단독시비 처리구의 생육과 비교하여 지상부, 지하부 모두 생체중이 증가하는 것을 확인할 수 있었다. 배추의 지상부 생체중은 미생물제제와 화학비료의 혼합시비 처리구에서 316.6g으로 가장 높아 화학비료 처리구(225.7g)와 비교하여 1.4배 증가하였으며, 또한 지하부의 생체중도 미생물제제와 화학비료의 혼합시비 처리구(4.4g)에서 화학비료 처리구(3.1g)와 비교하여 1.4배 증가하였다. 배추의 엽면적은 미생물제제와 화학비료의 혼합시비 처리구, 화학비료 처리구, 미생물제제 처리구에서 각각 3567.7, 2387.5, $2735.9cm^2$로 미생물제제의 처리로 배추의 엽면적이 증가함을 확인할 수 있었다. 실험의 결과를 통해 미생물제제가 관행의 농법에서 사용되는 화학비료를 대체하여 친환경비료로 사용될 수 있을 것으로 판단된다. 또한 화학비료에 토양미생물제제를 혼용 처리하여 무와 배추의 생육을 크게 향상시킬 수 있을 뿐 아니라 건전한 육종재료를 육성하기 위한 시비 방법으로 이용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. An, C.H., J.H. Lim, Y.H. Kim, B.K. Jung, J.W. Kim, and S.D. Kim. 2011. Effects on the soil microbial diversity and growth of red pepper by treated microbial agent in the red pepper field. Kor. J. Microbiol. Biotechnol. 40:30-38. https://doi.org/10.4014/kjmb.1110.10007
  2. Jeong, J.H., Y.D. Jeon, O.M. Lee, J.D. Kim, N.R. Lee, G.T. Park, and H.J. Son. 2010. Characterization of multi-functional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21:1029−1040. https://doi.org/10.1007/s10532-010-9363-y
  3. Jeong, S.J., W.B. Chung, H.T. Kim, K.H. Kang, J.S. Lee, and J.S. Oh. 2000. Effect on the soil physicochemistry property and plant growth and components of Chinese cabbage after application organic farming materials. Kor. J. Organic Agr. 8:131-146.
  4. Kang, B.K. and C.K. Song. 2003. Effect of application of microbial liquid manure on growth and yield of Altari radish (Raphanus sativus L.) in volcanic ash soil. Kor. J. Organic Agr. 11:67-75.
  5. Kim, H. and S.T. Kim. 2012. Establishing a crop system of organic farming for maximizing agricultural income. Kor. J. Organic Agr. 20:143-159.
  6. Kim, Y.H., J.H. Lim, C.H. An, B.K. Jung, and S.D. Kim. 2012a. Soil Microbial community analysis using soil enzyme activities in red pepper field treated microbial agents. J. Appl. Biol. Chem. 55:47-53. https://doi.org/10.3839/jabc.2011.058
  7. Kim, Y.K., S.J. Hong, C.K. Shim, M.J. Kim, E.J. Choi, M.H. Lee, J.H. Park, E.J. Han, N.H. An, and H.J. Jee. 2012b. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res. Plant Dis. 18:201-209. https://doi.org/10.5423/RPD.2012.18.3.201
  8. Lee, S.E., H.J. Kim, S.M. Kwon, R.B. Yoo, S.H. Woo, and K.Y. Chun. 2011. Effect of the treatment of clay mineral illite on the growth of radish in soil. Kor. Soc. Soil Sci. Fert. 5:285-286.
  9. Lee, Y.S., D.J. Park, J.H. Kim, H.S. Kim, and Y.L. Choi. 2013. Isolation and characterization of a novel bacterium, Bacillus subtilis HR-1019, with insoluble phosphates solubilizing activity. J. Life Sci. 23:242-248. https://doi.org/10.5352/JLS.2013.23.2.242
  10. Rural Development Administration. 2002a. Standard Farming Handbook 126: Cultivation techniques of radish. RDA, Suwon, Korea.
  11. Rural Development Administration. 2002b. Standard Farming Handbook-128: Cultivation techniques of Chinese cabbage. RDA, Suwon, Korea.
  12. Seok, W.Y., J.S. Oh, D.H. Kim, W.B. Chung, and S.J. Jeong. 2004. Effect of microbial product on microorganisms in soil and growth of Chinese cabbage. Kor. J. Organic Agr. 12:399-409.
  13. Swain, M.R. and R.C. Ray. 2008. Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J. Sci. Ind. Res. 67:622-628.
  14. Swain, M.R. and R.C. Ray. 2009. Bio-control from cow dung microflora. Microbiol. Res. 164:121-130. https://doi.org/10.1016/j.micres.2006.10.009
  15. Swain, M.R., R.C. Ray, and C.S. Nautiyal. 2008. Bio-control efficiency of Bacillus subtilis strains isolated from cow dung against postharvest yam pathogens. Curr. Microbiol. 57:407-411. https://doi.org/10.1007/s00284-008-9213-x
  16. Willer, H. and L. Kilcher. 2011. The world of organic agriculture, statistics and emerging trends. FiBL-IFOAM Report. IFOAM, Bonn, Germany and FiBL, Frick, Swiss.
  17. Woo, S.M., J.U. Woo, and S.D. Kim. 2007. Ourification and characterization of the siderophore from Bacillus licheniformis K11, a multi-functional plant growth promoting rhizobacterium. Kor. J. Microbial. Biotechnol. 35: 128-134.
  18. Yeo, S.H., Y.M. Yook, and H.S. Kim. 2009. Isolation and characterization of plant growth promoting rhizobacterium Bacillus subtilis YK-5 from soil. KSBB J. 24:334-340.

Cited by

  1. Quality and functional characteristics of kimchi made with organically cultivated young Chinese cabbage (olgari-baechu) vol.3, pp.2, 2013, https://doi.org/10.1016/j.jef.2016.05.003