DOI QR코드

DOI QR Code

Reliability of Metal Electrode for Flexible Electronics

유연성 소자용 금속 전극의 신뢰성 연구 동향

  • Kim, Byoung-Joon (Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology)
  • Received : 2013.12.17
  • Accepted : 2013.12.26
  • Published : 2013.12.30

Abstract

Recently, various types of flexible devices such as flexible displays, batteries, e-skins and solar cell panels have been reported. Most of the researches focus on the development of high performance flexible device. However, to realize these flexible devices, the long-term reliability should be guaranteed during the repeated deformations of flexible devices because the direct mechanical stress would be applied on the electronic devices unlike the rigid Si-based devices. Among various materials consisting electronics devices, metal electrode is one of the weakest parts against mechanical deformation because the mechanical and electrical properties of metal films degrade gradually due to fatigue damage during repeated deformations. This article reviews the researches of fatigue behavior of thin metal film, and introduces the methods to enhance the reliability of metal electrode for flexible device.

Keywords

References

  1. B. Lahey, A. Girouard, W. Burleson, R. Vertegaal, "Paper-Phone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays.", Proc. of CHI '11, ACM, 1303 (2011).
  2. D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, et al., "Epidermal electronics", Science, 333, 838 (2011). https://doi.org/10.1126/science.1206157
  3. L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui and Y. Cui, "Highly conductive paper for energy-storage devices", Proc. Natl. Acad. Sci. USA, 106, 21490 (2009). https://doi.org/10.1073/pnas.0908858106
  4. K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang , N. Meethong, P. T. Hammond , Y. M. Chiang , A. M. Belcher, "Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes", Science, 312, 885 (2006). https://doi.org/10.1126/science.1122716
  5. J. H. Ahn, H. Lee, S. H. Choa, "Technology of flexible semiconductor/memory device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).
  6. J. M. Paik, H. Park, Y. C. Joo, "Eect of low-k dielectric on stress and stress-induced damage in Cu interconnects", Microelectron. Eng., 71, 348 (2004). https://doi.org/10.1016/j.mee.2004.02.094
  7. J. M. Paik, K. C. Park, H. Park, Y. C. Joo, "Effect of dielectric materials on stress-induced damage modes in damascene Cu lines", J. Appl. Phys., 97, 104513 (2005). https://doi.org/10.1063/1.1909283
  8. S. J. Hwang, Y. D. Lee, Y. B. Park, J. H. Lee, C. O. Jeong, Y. C. Joo, "In situ study of stress relaxation mechanisms of pure Al thin lms during isothermal annealing", Scripta Mater., 54, 1841 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.024
  9. S. J. Hwang, J. H. Lee, C. O. Jeong, Y. C. Joo, "Effect of film thickness and annealing temperature on hillock distributions in pure Al films", Scripta Mater., 56, 17 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.001
  10. S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic", Nature, 428, 911 (2004). https://doi.org/10.1038/nature02498
  11. G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, "Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors", Small, 8, 452 (2012). https://doi.org/10.1002/smll.201101719
  12. H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, "A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode", Adv. Funct. Mater., 20, 2893 (2010). https://doi.org/10.1002/adfm.201000900
  13. B. H. Lee, S. H. Park, H. Back, K. Lee, "Novel Film-Casting Method for High-Performance Flexible Polymer Electrodes", Adv. Funct. Mater., 21, 487 (2011). https://doi.org/10.1002/adfm.201000589
  14. M. Vosgueritchian, D. J. Lipomi, Z. Bao, "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes", Adv. Funct. Mater., 22, 421 (2012). https://doi.org/10.1002/adfm.201101775
  15. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  16. N. Lu, X. Wang, Z. Suo, J. Vlassak, "Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates", J. Mater. Res., 24, 379 (2009). https://doi.org/10.1557/JMR.2009.0048
  17. N. Lu, Z. Suo, J. Vlassak, Acta Mater. "The eect of lm thickness on the failure strain of polymer-supported metal lms", 58, 1679 (2010). https://doi.org/10.1016/j.actamat.2009.11.010
  18. S. Suresh, Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press (1999).
  19. G. E. Dieter, Mechanical metallurgy. London: McGraw-Hill Book Company (1988).
  20. R. Schwaiger, G. Dehm, O. Kraft, "Cyclic deformation of polycrystalline Cu films", Philos. Mag., 83, 693 (2003). https://doi.org/10.1080/0141861021000056690
  21. X. J. Sun, C. C. Wang, J. Zhang, G. Liu, G. J. Zhang, X. D. Ding, "Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates", J. Phys. D: Appl. Phys. 41. (2008)
  22. G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft, Acta Mater. "Length-scale-controlled fatigue mechanisms in thin copper lms", 54, 3127 (2006). https://doi.org/10.1016/j.actamat.2006.03.013
  23. D. Wang, C. A. Volkert, O. Kraft, "Effect of length scale on fatigue life and damage formation in thin Cu films", Mater. Sci. Eng. A, 493, 267 (2008). https://doi.org/10.1016/j.msea.2007.06.092
  24. Japanese Industrial Standards (JIS), C5016, (1999.)
  25. The Institute for Interconnecting and Packaging Electronics Circuits (IPC) Standards, TM-650, (1996).
  26. B. J. Kim, M. H. Jung, S. H. Hwang, H. Y. Lee, S. W. Lee, K. D. Chun, Y. B. Park, Y.C. Joo "Relationship between tensile characteristics and fatigue failure by folding or bending in Cu foil on flexible substrate", J. Microelectron. Packag. Soc., 18(1), 55 (2011).
  27. B. J. Kim, H. A. S. Shin, S. Y. Jung, Y. Cho, O. Kraft, I. S. Choi, Y. C. Joo, "Crack nucleation during mechanical fatigue in thin metal films on flexible substrate" Acta Mater., 61, 3473 (2013). https://doi.org/10.1016/j.actamat.2013.02.041
  28. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, J. J. Kim, J. W. Kang, "Extremely Flexible Transparent Conducting Electrodes for Organic Devices" Adv. Energy Mater., in press. (2013)
  29. P.A. Gruber, E. Arzt, R. Spolenak, "Brittle-to-ductile transition in ultrathin Ta/Cu film systems", J. Mater. Res., 24, 1906 (2009). https://doi.org/10.1557/jmr.2009.0252
  30. L. F. Coffin, Trans ASME, 76, 931 (1954).
  31. S. S. Manson. Report 1170. Cleveland (OH): Lewis Flight Propulsion Laboratory (1954).
  32. O. Kraft, R. Schwaiger, P. Wellner, "Fatigue in thin lms: lifetime and damage formation", Mater. Sci. Eng. A,319,919 (2001).
  33. W. Weibull, J. Appl. Mech. -Trans. ASME, 18, 293 (1951).
  34. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  35. D. H. Kim, Z. Liu, Y. S. Kim, J. Wu, J. Song, H. S. Kim, Y. Huang, K. C. Hwang, Y. Zhang, J. A. Rogers, "Optimized Structural Designs for Stretchable Silicon Integrated Circuits", Small, 5(24), 2841 (2009). https://doi.org/10.1002/smll.200900853
  36. S. P. Lacour, S. Wagner, Z. Huang, Z. Suo, "Stretchable gold conductors on elastomeric substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  37. B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, J. A. Lewis, "Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes", Science, 323, 1590 (2009). https://doi.org/10.1126/science.1168375
  38. R. Carta, P. Jourand , B. Hermans , J. Thone, D. Brosteaux, T. Vervust, F. Bossuyt, F. Axisa, J. Vanfl eteren, R. Puers, "Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications", Sens. and Actuators A, 156, 79 (2009). https://doi.org/10.1016/j.sna.2009.03.012
  39. B. J. Kim, Y. Cho, M. S. Jung, H. A. S. Shin, M. W. Moon, H. N. Han, Y. C. Joo, I. S. Choi, "Fatigue-free, electrically reliable copper electrode with nanohole array", Small 2012, 8, 3300. https://doi.org/10.1002/smll.201200674

Cited by

  1. The Improvement of Electrical Characteristics of Inkjet-printed Cu films with Stress Relaxation during Thermal Treatment vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.057
  2. The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.077
  3. 나노 소재 기반의 전기장 투과 전극에 관한 연구동향 vol.27, pp.1, 2013, https://doi.org/10.6117/kmeps.2020.27.1.009