DOI QR코드

DOI QR Code

Effect of Forage Feeding Level on the Milk Production Characteristics of Holstein Lactating Cows

조사료 급여 수준이 Holstein 착유우의 산유 특성에 미치는 영향

  • 이배훈 (강원대학교 동물생명과학대학) ;
  • ;
  • 김현섭 (농촌진흥청 국립축산과학원) ;
  • 성경일 (강원대학교 동물생명과학대학)
  • Received : 2013.02.23
  • Accepted : 2013.03.06
  • Published : 2013.03.31

Abstract

This study was performed on two groups (10 cows) for primiparous Holstein lactating cows (av. 98 days in milk : DIM) which were divided into low forage diet (LF) and high forage diet (HF) groups based on forage : concentrate ratio (F : C ratio). The F : C ratios of LF and HF groups were 37:63 and 62:38, respectively. Concentrate intake was significantly higher in the LF group than the HF group whereas the HF group showed higher forage intake (12.9 kg) compared to the LF group (7.4 kg) (p<0.05). No significant difference was observed in total feed intake between the HF (20.9 kg) and LF (19.4 kg) group (p>0.05), but the HF group tended to be higher. CP, TDN and NEL intake showed no significant difference between the two groups (p>0.05). Though, there was no significant difference on actual milk between the two groups (26 vs. 23.9 kg/d, p>0.05), the LF group tended to be higher. 4% FCMs of LF and HF groups were 22.8 and 22.3 kg/d, respectively, and showed no significant difference (p>0.05). The HF group was higher in fat content and lower in MUN. C14:0, C16:0 and C16:1n7 of milk fatty acid were significantly higher in the HF group (p<0.05), but there were no differences in other milk fatty acids between the two groups. As a result, increasing high quality forage such as BIRG silage and hay in the diet will not only fulfill nutrient requirements but also reduce milk production.

본 실험은 조사료와 농후사료비율(조:농비)에 따라 low forage(LF)구 및 high forage(HF)구로 나누어 Holstein 착유소(초산) 10두를 각 5두씩 배치하여 실시하였다. LF구는 조:농비가 37:63로 BIRG 사일리지와 혼합건초를 포함한 조사료의 급여량을 줄인 반면 농후사료를 다량 급여하였다. HF구는 조:농비가 62:38로 농후사료 급여량을 줄인 반면 BIRG 사일리지와 혼합건초를 포함한 조사료를 다량 급여하였다. 평균 조사료섭취량은 LF구 7.1 및 HF구 13.0 kg으로 HF구에서, 평균 농후사료 섭취량은 LF구 12.3 및 HF구 7.9 kg으로 LF구에서 유의적으로 높았다(p<0.05). 총 사료 섭취량은 LF구 19.4 및 HF구 20.9 kg으로 HF구에서 높은 경향을 보였으나 유의적인 차이는 없었다(p>0.05). CP, TDN 및 NEL 섭취량은 두 처리구간에 유의적인 차이는 없었다(p>0.05). 실제 산유량은 LF구 26 및 HF구 23.9 kg/d 으로 처리 간에 유의적인 차이는 없었으나(p>0.05) LF구에서 높은 경향을 보였다. 4% FCM은 LF구 22.8 및 HF구 22.3 kg/d 으로 유의적인 차이는 없었다(p>0.05). HF구에서 유지방 함량은 높고 MUN 함량은 낮았다. 우유의 C14:0, C16:0 및 C16:1n7 함량은 HF구가 LF구 보다 유의적으로 높았으나(p<0.05), 그 외의 우유지방산은 두 처리구간에 차이는 없었다. 이상의 결과로부터 본 연구에서와 같이 급여 사료 중 BIRG 사일리지와 수입건초와 같은 조사료를 적절하게 배합하여 다량급여 하여도 착유소(초산우)에 필요한 영양소 충족이 가능하여 산유량의 감소가 없는 것으로 사료된다.

Keywords

References

  1. Association of Official Analytical Chemists. 1990. Official Methods of Analysis. Vol. 15th ed. AOAC, Arlington, VA.
  2. Baek, K.S., Park, S.J., Lim, H.J., Son, J.K., Kwon, E.G., Lee, W.S., Kim, H.S., Hur, T.Y. and Kang, S.J. 2011. 고능력 젖소의 비율이 평균 보유산차 및 도태 유형에 미치는 영향. in Reproductive & Developmental Biology (Supplement). The Korean Society of Animal Reproduction. 35:89.
  3. Carlsson, J. and Pehrson, B. 1994. The influence of the dietary balance between energy and protein on milk urea concentration. Experimental trials assessed by two different protein evaluation systems. Acta Veterinaria Scandinavica. 35:193-205.
  4. Dewhurst, R.J., Shingfield, K.J., Lee, M.R.F. and Scollan, N. D. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology. 131:168-206. https://doi.org/10.1016/j.anifeedsci.2006.04.016
  5. Goering, H.K. and Van Soest, P.J. 1970. Forage fiber analyses (apparatus, reagent, procedures. and some applications). Vol. 379. Washington, DC: US Agricultural Research Service.
  6. Hutjens, M.F. and Barmore, J.A. 1995. Milk urea test gives us another tool. Hoard's Dairyman. 140. 10:401.
  7. ISO 14156. 2001. Milk and milk products-Extraction methods for lipids and liposoluble compounds.
  8. ISO 15884. 2002. Milk fat Preparation of fatty acid methyl esters.
  9. Japan Livestock Industry Association (JLIA). 2006. Japanese Feeding Standard for Dairy Cattle. Edited by National Agriculture and Food Research Organization, NARO. Japan.
  10. Kajikawa, H.M., Odai, M., Saitoh, T., Takahashi, R., Tano, H.Abe. and A, Abe. 1990. Effects of sugar-beet pulp on ruminal and lactation performances of cows having different rumen fermentation patterns. Animal Feed Science and Technology. 31: 91-104 https://doi.org/10.1016/0377-8401(90)90116-P
  11. Khorasani, G.R., Okine, E.K. and Kennelly, J.J. 2001. Effects of forage source and amount of concentrate on rumen and intestinal digestion of nutrients in late-lactation cows. Journal of Dairy Science. 84:1156-1165. https://doi.org/10.3168/jds.S0022-0302(01)74576-6
  12. Kim, W.H. 2011. High quality forage production and utilization. in 젖소사양관리도감. Korea Dairy & Beef Farmers Association. pp. 130-152.
  13. National Research Council (NRC). 1989. Nutrient Requirements of Dairy Cattle. 6th Revised Edition. National Academy Press Washington. D.C.
  14. National Research Council (NRC). 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. National Academy Press Washington. D.C.
  15. Noh, K.S., Lee, J.S., Lee, B.O., Lee, S.H., Park, S.H. and Lee, O.L. 2009. 조사료 생산 및 이용 확대를 위한 연구. Korea Dairy & Beef Farmers Association. pp. 18.
  16. Rural Development Administration (RDA). 2007. Korean Feeding Standard for Dairy Cattle (한국사양표준 젖소). National Instiute of Animal Science, RDA. pp. 239-246.
  17. Seo, S., Chung, E.S., Kim, K.Y., Choi, G.J., Ahn, J.N., Han, J.S., Park, H.K. and Kim, Y.S. 2010. Comparison of Forage Productivity and Quality of Italian Ryegrass and Barley Mono, and Mixtures Sown in Early Spring. Journal of the Korean Society of Grassland and Forage Science. 30:115-120. https://doi.org/10.5333/KGFS.2010.30.2.115
  18. Sung, K.I. 1990. Yearlong utilization of silage and grass energy efficiency of milk production in dairy lactating cows fed high forage diets. Ph.D. Thesis. Graduate School of Agriculture. Hokkaido University. Japan.
  19. Sung, K.I. 2011. FMD 이후 친환경 축산 육성을 위한 풀사료 (초지사료작물)의 역할. in A General Plan on Enlargement of Productivity of Domestic Forages on Paddy Land. 2011 Proceedings of the 49th Symposium of the Korean Society of Grassland and Forage Science. pp. 9-32.
  20. Wardeh, M.F. 1981. Models for estimating energy and protein utilization for feed. Ph.D. thesis, Utah State Univ. Logan Utah. USA. in Korean Tables of Feed Composition (Han, I. K. et al. 1982. Korea Feed Information Center, c/o College of Agriculture, Seoul National University. pp. 42.
  21. Weiss, W.P. and Pinos-Rodriguez, J.M. 2009. Production responses of dairy cows when fed supplemental fat in low- and high-forage diets. Journal of Dairy Science. 92:6144-6155. https://doi.org/10.3168/jds.2009-2558
  22. West, J.W., Mandebvu, P., Hill, G.M. and Gates, R.N. 1998. Intake, milk yield, and digestion by dairy cows fed diets with increasing fiber content from bermudagrass hay of silage. Journal of Dairy Science. 81:1599-1607. https://doi.org/10.3168/jds.S0022-0302(98)75726-1
  23. Whitlock, L.A., Schingoethe, D.J., Hippen, A.R., Kalscheur, K.F. and AbuGhazaleh, A.A. 2003. Milk Production and Composition from Cows Fed High Oil or Conventional Corn at Two Forage Concentrations. Journal of Dairy Science. 86:2428-2437. https://doi.org/10.3168/jds.S0022-0302(03)73837-5
  24. 浜田龍夫. 1984. 濃厚飼料の利用性を高めるル-メンコンデション. in ザ.ル-メソ. Dairy Japan社. pp. 61-76.
  25. 平井洋次. 2002. 乳牛の繁殖障害とエサ給與. Dairy Japan.

Cited by

  1. Effects of TDN/CP Ratio on Nutrient Intake, Body Weight Gain, Blood Characteristics of Dairy Heifers from 12 to 14 Months of Age vol.36, pp.2, 2016, https://doi.org/10.5333/KGFS.2016.36.2.115