DOI QR코드

DOI QR Code

Present States, Methodological Features, and an Exemplar Study of the Research on Learning Progressions

학습 발달과정 연구의 현황, 방법론적 특징 및 연구 사례

  • Received : 2012.11.19
  • Accepted : 2013.02.01
  • Published : 2013.02.28

Abstract

The purpose of this paper is to introduce the current studies and research methods about Learning Progressions disseminated to several countries including the U.S. since 2006. It also provides a methodological base to investigate learning progressions in science by introducing a case study of learning progression conducted in Korea. For this study, we described several features of current studies on learning progressions in the U.S., and reported the common ways and sequences employed in examining learning progressions especially with respect to assessment for learning. Learning progressions are descriptions of developmental pathways of learning a topic, in which science knowledge is used in students' engaging in science practices. Each learning progression consists of upper anchor, lower anchor, and intermediate steps that connect both anchors. In investigating a learning progression, researchers usually utilize Wilson's four building blocks of assessment system based on the assessment triangle. This kind of method was also applied in investigating the learning progression for water cycle in this study. We discussed implication and consideration for the future research on learning progressions in science in Korea.

이 논문은 2006년 이후 미국을 비롯한 세계 여러나라로 점차 확산되고 있는 학습 발달과정(Learning Progressions) 연구의 현황과 연구 방법을 소개하고, 최근에 국내에서 수행된 연구 사례를 중심으로 학습발달과정 연구의 실제를 제시하여 학습 발달과정을 조사하기 위한 방법론적 기초를 제공하기 위한 것이다. 이를 위해 미국을 중심으로 진행되어 온 학습 발달과정 연구의 현황을 소개하고, 특별히 학습을 위한 평가의 관점에서 학습 발달과정을 조사하는 방법과 절차를 정리하였다. 과학의 학습 발달과정은 과학의 주제를 학습할 때 형성되는 발달의 경로를 기술한 것으로서, 발달의 경로를 따라 학생들은 과학 지식을 활용하여 과학의 탐구실행에 참여하게 된다. 각각의 학습 발달과정은 상위 정착점과 하위 정착점, 그리고 두 정착점을 연결해 주는 중간 단계들로 구성되었다. 과학의 학습 발달과정을 조사할 때, 연구자들은 평가의 삼각형에 기반하여 구성된 Wilson의 4단계의 평가 시스템 구성단위를 주로 사용하였다. 논문에서는 학습 발달과정의 조사 방법과 절차를 물의 순환에 대한 학습 발달과정 조사에 적용한 사례 연구를 소개하고, 한국에서 수행될 학습 발달과정에 대한 후속 연구를 위한 함의점과 고려할 점을 논의하였다.

Keywords

References

  1. 강남화 (2012, 7월). 미국의 국가수준 과학교육틀 수립이 주는 우리나라 과학교육과정에의 시사점. 한국과학교육학회 하계 학술대회, 강원대학교.
  2. 국동식 (1988). 물의 상태 변화에 대한 중, 고등학생의 개념 형성에 관한 연구. 한국과학교육학회지, 8(1), 33-42.
  3. 김경희, 신진아, 송미영, 박인용, 김완수, 최인봉, 손원숙, 이현숙 (2012). 2011년 국가수준 학업성취도 평가 결과: 학업 성취 및 향상 특성 분석. 한국교육과정평가원 연구 보고서 RRE 2012-1-5.
  4. 김미경, 김동영, 이인호, 정은영, 강훈식, 최요한 (2012). 2011년 국가수준 학업성취도 평가 결과 분석: 과학. 한국교육과정평가원 연구 보고서 RRE 2012-2-5.
  5. 김효남, 신인철, 최병순, 강순희 (1993). 증발과 응결에 대한 국민 학생들의 개념 조사. 한국과학교육학회지, 13(1), 92-99.
  6. 남윤경, 정진우, 장명덕 (2004). '대기와 물의 순환'관련 개념들에 대한 과제 상황에 따른 고등학생들의 응답의 일관성. 한국지구과학회지, 25(8), 656-662.
  7. 맹승호 (2011, 9월). 미국의 새 과학교육 프레임웍 (A Framework for K-12 Science Education)에 입각한 지구과학 Learning Progression 연구의 전망. 한국지구과학회 추계학술발표회 논문집, 제주대학교.
  8. 맹승호, 성연선, 장신호 (2012, 7월). Ordered Multiple Choice Items를 적용한'물의 순환'주제의 학습 발달과정(learning progressions) 개발: Rasch 모델에 기반한 초등학교 4 - 6 학년의 사례. 한국과학교육학회 하계 학술대회, 강원대학교.
  9. 박현주 (1996). 초등학교 학생들의 증발에 대한 개념 생태 연구. 초등과학교육, 15(2), 215-222.
  10. 박현주, 김영민, 노석구, 정진수, 이은아, 유은정, 이동욱, 박종원, 백윤수 (2012). 과학교육 내용 표준 개발. 한국과학교육학회지, 32(4), 729-750.
  11. 배대성, 유준희 (2012). 중학생의 힘과 운동 현상 관련 과학적 모형구성 수준의 상세화, 새물리, 62(8), 809-825.
  12. 백남진 (2006). 교과 교육과정에서의 교육 내용 진술의 구체화. 교육과정연구, 24(2), 207-233.
  13. 백성혜, 박재원, 박진옥, 임명혁, 고영미, 조부경, 김효남 (2002). 물의 상태, 상태변화 및 그 조건에 대한 유치원, 초등, 중등 과학 교재의 내용 분석. 한국과학교육학회지, 22(2), 215-229.
  14. 성태제 (2001). 문항 반응 이론의 이해와 적용. 서울: 교육과학사.
  15. 신동희, 이양락, 이기영, 이은아, 이규석 (2005). 지구 환경을 고려한 미래 지향적 지구 과학 교육 과정 제안. 한국과학교육학회지, 25(2), 239-259.
  16. 유병길, 양정인 (2003). 초등학교 학생들의 증발과 응결 개념에 관한 연구. 과학교육연구, 28, 185-198.
  17. 윤현진, 이재봉, 김용진, 백성혜, 이기영 (2009). 과학과 교육 내용 개선 방안 연구: 교육과정 내용 관 련 쟁점을 중심으로. 한국교육과정평가원 연구보고서 RRC 2009-3-4.
  18. 이용복, 배영부 (1994). 물의 순환에 대한 아동들의 인식에 관한 연구. 초등과학교육, 13(1), 81-92.
  19. 이용복, 이성미 (1998). 초등학교 학생들의 증발과 응결 개념에 대한 연구. 초등과학교육, 17(1), 89-103.
  20. 이해명 (2003). 교육과정 개정 사례를 통해서 본 교육과정 개발체제의 문제점 및 개선 방향. 교육학연구, 41(2), 197-224.
  21. 정진우, 김윤지 (2008). 물의 순환에 대한 초등 예비 교사들의 지구 시스템적 인식. 초등과학교육, 27(4), 319-327.
  22. 조부경, 고영미, 김효남, 백성혜, 박재원, 박진옥, 임명혁 (2002). 증발과 증발 조건에 관한 활동에서 유.초.중학교 학생들의 개념 유형 및 학년별 경향성에 관한 연구. 한국과학교육학회지, 22(2), 286-298.
  23. 조현희, 김광명 (2000). 대기 현상에 대한 초등학생의 선개념 및 오개념 분석. 과학교육연구, 24, 1-23.
  24. 지은림, 채선희 (2000). Rasch 모형의 이론과 실제. 서울: 교육과학사.
  25. Alonzo, A. C., & Gotwals, A. W. (2012). Learning progressions in science: Current challenges and future directions. Sense Publishers, Rotterdam: The Netherlands.
  26. Alonzo, A. C., & Steedle J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421. https://doi.org/10.1002/sce.20303
  27. Bar, V. (1989). Children's views about the water cycle. Science Education, 73(4), 481-500. https://doi.org/10.1002/sce.3730730409
  28. Ben-zvi-Assaraf, O. & Orion, N. (2005a). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518-560. https://doi.org/10.1002/tea.20061
  29. Ben-zvi-Assaraf, O. & Orion, N. (2010). System thinking skills at the elementary school level. Journal of Research in Science Teaching, 47(5), 540-563.
  30. Ben-zvi-Assarf, O., & Orion, N. (2005b). A study of junior high students'perceptions of the water cycle. Journal of Geoscience Education, 53(4), 366-373.
  31. Berland L.K., & McNeill, K.L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793. https://doi.org/10.1002/sce.20402
  32. Black, P. J., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy and Practice, 5(1), 7-73.
  33. Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiplechoice item responses for diagnostic assessment with a learning progression. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 293-316).
  34. Rotterdam: Sense Publishers, The Netherlands. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  35. Carraher, D., Smith, C., Wiser, M., Schliemann, A., & Cayton-Hodges, G. (2009). Assessing students'evolving understandings about matter. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA, USA.
  36. Corcoran, T., & Silander, M. (2009). Instruction in high schools: The evidence and the challenge. The Future of Children: America's High Schools, 19, 157-183. Retrieved from http://www.futureofchildren.org
  37. Corcoran, T., Mosher, F.A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform (Consortium for Policy Research in Education Report #RR-63). Philadelphia, PA: Consortium for Policy Research in Education.
  38. Covitt, B. A., Gunckel, K. L., & Anderson, C. W. (2009). Students'developing understanding of water in environmental systems. The Journal of Environmental Education, 40(3), 37-51. https://doi.org/10.3200/JOEE.40.3.37-51
  39. Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316
  40. Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students'understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312
  41. Duschl, R., & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education, DOI 10.1007/s11191-012- 9539-4.
  42. Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
  43. Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers' enactment of formative assessment. Journal of Research in Science Teaching, 49(9), 1181-1210. https://doi.org/10.1002/tea.21054
  44. Gunckel, K. L., Covitt, B. A., Salinas, I., & Anderson, C. W. (2012). A learning progression for water in socio-ecological systems. Journal of Research in Science Teaching, 49(7), 843-868. https://doi.org/10.1002/tea.21024
  45. Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socioecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180. https://doi.org/10.1002/tea.21051
  46. Johnson, P. (2007a). Children's understanding of changes of state involving the gas state, part 1: boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
  47. Johnson, P. (2007b). Children's understanding of changes of state involving the gas state, part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 20(6), 695-709.
  48. Johnson, P., & Tymms, P. (2011). The emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48(8), 849-877. https://doi.org/10.1002/tea.20433
  49. Lehrer, R., & Schauble, L. (2009). Images of learning, images of progress. Journal of Research in Science Teaching, 46(6), 731-735. https://doi.org/10.1002/tea.20317
  50. Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701-724. https://doi.org/10.1002/sce.20475
  51. Mohan, L., & Anderson, C. W. (2009, June). Teaching experiments and the carbon cycle learning progression. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA, USA.
  52. Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socioecological systems. Journal of Research in Science Teaching, 46(6), 675-698. https://doi.org/10.1002/tea.20314
  53. National Assessment Governing Board (2008). NAEP 2009 science framework development: issues and recommendations. Retrieved from http://www.nagb.org
  54. National Research Council (2001). Knowing what students know: The science and design of educational assessment. J. W. Pellegrino, N. Chudowsky, & R. Glaser (Eds.). Washington, DC: National Academy Press.
  55. National Research Council (2006). Systems for state science assessment. M. R. Wilson & M. W. Bertenthal (Eds.). Washington, DC: National Academy Press.
  56. National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington DC: The National Academies Press.
  57. National Research Council (2012). A framework for K-12 Science Education: Practices, cross-cutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards.Washington DC: The National Academies Press.
  58. Oliva, P. F. (1988). Developing the curriculum (2nd ed.) Glewview, IL: Scott, Foresman and Company.
  59. Plummer, J.D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an Earthbased perspective. Journal of Research in Science Teaching, 47(7), 768-787. https://doi.org/10.1002/tea.20355
  60. Rivet, A. E., & Kastens, K. A. (2012). Developing a construct-based assessment to examine students'analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-743. https://doi.org/10.1002/tea.21029
  61. Saylor, J. G., Alexander, W. M., Lewis, A. J. (1981). Curriculum planning for better teaching and learning (4th ed.). New York: Holt, Rinehart and Winston.
  62. Schubert, W. H. (1986). Curriculum: Perspectives, paradigm, and possibility. New York: Macmillan.
  63. Schwarz, C.V., Reiser, B.J., Davis, E.A., Kenyon, L., Ach'er, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  64. Smith, C. L., Wiser, M., & Carraher, D. W. (2010, March). Using a comparative, longitudinal study with upper elementary school students to test some assumptions of a learning progression for matter. Paper presented at the annual meeting of the National Association for Research on Science Teaching, Philadelphia, PA. USA.
  65. Songer, N. B., Kelcey, B., & Gotwals, A.W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progressions focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46(6), 610-631. https://doi.org/10.1002/tea.20313
  66. Stevens, S., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multidimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
  67. Taiwo, W. W., Ray, H., Motswiri, M. J., & Masene, R. (1999). Perceptions of the water cycle among primary school children in Botswana. International Journal of Science Education, 21(4), 413-429. https://doi.org/10.1080/095006999290633
  68. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.
  69. Wilson, M. (2009). Measuring Progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716-730. https://doi.org/10.1002/tea.20318
  70. Wiser, M., Smith, C. L., & Doubler, S. (2012). Learning progressions as tools for curriculum development: Lessons from the Inquiry project. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 359-403). Rotterdam: Sense Publishers, The Netherlands.

Cited by

  1. A Case Study of Middle School Science Teachers' Topic-Specific Pedagogical Content Knowledge on the Unit of Stars and Universe vol.34, pp.4, 2014, https://doi.org/10.14697/jkase.2014.34.4.0393
  2. Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter vol.34, pp.5, 2014, https://doi.org/10.14697/jkase.2014.34.5.0437
  3. Development and Validation of a Learning Progression for Astronomical Systems Using Ordered Multiple-Choice Items vol.34, pp.8, 2014, https://doi.org/10.14697/jkase.2014.34.8.0703
  4. Cross-Sectional Item Response Analysis of Geocognition Assessment for the Development of Plate Tectonics Learning Progressions: Rasch Model vol.35, pp.1, 2015, https://doi.org/10.14697/jkase.2015.35.1.0037
  5. International Comparative Study on the Science Curriculum Concepts Continuity - Focus on the Concepts of Moon and Rock cycle - vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0677
  6. An Analysis of Systems Thinking Revealed in Middle School Astronomy Classes: The Case of Science Teachers’ Teaching Practices for the Unit of Stars and Universe vol.36, pp.6, 2015, https://doi.org/10.5467/JKESS.2015.36.6.591
  7. A Development on Learning Progressions about Concepts of the Properties of Light in the Elementary Students vol.35, pp.3, 2016, https://doi.org/10.15267/keses.2016.35.3.326
  8. A Proposal of Curriculum and Teaching Sequence for Seasonal Change by Exploring a Learning Progression vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.260
  9. Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.103
  10. 생태계에 대한 학습발달과정의 개발과 평가 vol.36, pp.1, 2016, https://doi.org/10.14697/jkase.2016.36.1.0029
  11. 초등학생의 지구의 운동과 태양계 학습 발달과정의 타당성 검증: 구인 타당도 및 결과 타당도를 중심으로 vol.36, pp.1, 2013, https://doi.org/10.14697/jkase.2016.36.1.0177
  12. 용해와 용액 개념에 대한 학습발달과정 조사 vol.36, pp.2, 2013, https://doi.org/10.14697/jkase.2016.36.2.0295
  13. 기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석 vol.36, pp.6, 2016, https://doi.org/10.14697/jkase.2016.36.6.0815
  14. 국가수준 학업성취도 평가의 서답형 문항을 이용한 중학교 과학 8개 핵심 개념에 대한 학습발달과정 탐색 vol.41, pp.3, 2013, https://doi.org/10.21796/jse.2017.41.3.382
  15. 물질의 특성에 대한 중학생의 거시적 개념과 미시적 개념의 비교 vol.62, pp.3, 2018, https://doi.org/10.5012/jkcs.2018.62.3.243
  16. 과학과 실과(기술·가정) 교육과정에 제시된 '시스템'과 '에너지' 핵심 개념의 연계성에 대한 국제 비교 연구 vol.42, pp.1, 2013, https://doi.org/10.21796/jse.2018.42.1.27
  17. 지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구 vol.38, pp.4, 2013, https://doi.org/10.14697/jkase.2018.38.4.481
  18. 문항 반응 분석을 활용한 초등학생과 중학생의 시스템 사고 검사 도구 타당도 검증 vol.67, pp.2, 2013, https://doi.org/10.25152/ser.2019.67.2.249
  19. 고등학생들의 통합 탐구 기능 향상을 위한 인지적 스캐폴딩 도구 개발 및 적용 vol.39, pp.4, 2013, https://doi.org/10.14697/jkase.2019.39.4.545
  20. 다층 서답형 문항을 이용한 태양계 구조 학습 발달과정 개발 및 타당성 검증 vol.41, pp.3, 2020, https://doi.org/10.5467/jkess.2020.41.3.291