DOI QR코드

DOI QR Code

Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar

참깨 부산물 Biochar의 중금속 흡착특성

  • Choi, Ik-Won (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Seo, Dong-Cheol (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Kang, Se-Won (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Lee, Sang-Gyu (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Seo, Young-Jin (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Lim, Byung-Jin (Yeongsan River Environmental Research Center) ;
  • Heo, Jong-Soo (Division of Applied Life Science (BK21 program) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (Department of Bio-Environmental Sciences, Sunchon National University)
  • 최익원 (순천대학교 생물환경학과) ;
  • 서동철 (순천대학교 생물환경학과) ;
  • 강세원 (순천대학교 생물환경학과) ;
  • 이상규 (순천대학교 생물환경학과) ;
  • 서영진 (순천대학교 생물환경학과) ;
  • 임병진 (국립환경과학원 영산강 물환경연구소) ;
  • 허종수 (경상대학교 응용생명과학부 (BK21 농업생명산업 글로벌 인재 육성 사업단) & 농업생명과학원) ;
  • 조주식 (순천대학교 생물환경학과)
  • Received : 2013.01.18
  • Accepted : 2013.02.08
  • Published : 2013.02.28

Abstract

Little research has been conducted to explore the heavy metal removal potential of biochar. The adsorption characteristics of heavy metals by sesame waste biochar (pyrolysis at $600^{\circ}C$ for 1 hour) as heavy metal absorbent were investigated. The sesame waste biochar was characterized by SEM-EDS and FT-IR, and heavy metal removal was studied using Freundlich and Langmuir equations. The removal rates of heavy metals were higher in the order of Pb>Cu>Cd>Zn, showing that the adsorption efficiency of Pb was higher than those of any other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained for adsorption of heavy metals on biochar produced from sesame waste. Pb, Cu, Cd and Zn equilibrium adsorption data were fitted well to the two models, but Pb gave a better fit to Langmuir model. Heavy metals were observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Main functional groups were aromatic C=O ring (at $1160cm^{-1}$, $1384cm^{-1}$ and $1621cm^{-1}$) by FT-IR analysis. Thus, biochar produced from sesame waste could be useful adsorbent for treating heavy metal wastewaters.

참깨 부산물의 중금속 흡착제로서 가능성을 검토하기 위해 $600^{\circ}C$에서 1시간동안 열분해 한 참깨 부산물 biochar를 이용하여 중금속 오염폐수 중의 중금속 흡착특성을 조사하였다. Biochar의 중금속 제거효율은 Pb>Cu>Cd>Zn 순으로 Pb의 흡착효율이 가장 높게 나타났다. 참깨 부산물 biochar를 이용한 흡착실험 결과를 Freundlich와 Langmuir 등온흡 착식에 적용하여 각각의 중금속 인자를 산출한 결과 Langmuir와 Freundlich 등온흡착식 모두에서 Pb의 흡착능력이 Cu, Cd 및 Zn에 비해서 우수한 것으로 나타났다. Pb의 경우는 Langmuir 등온흡착식이 Freundlich 등온흡착식에 비해 더 적합하였으나 Cu, Cd 및 Zn의 경우 저농도에서 약간 차이는 있었으나 두 등온흡착식 모두 적합하였다. 전자현미경 (SEM)을 이용하여 중금속 흡착 전 후의 biochar 표면을 관찰한 결과 중금속 흡착 후에 각각의 중금속이 흡착되어 있는 것을 관찰 할 수 있었다. FT-IR 분석결과 중금속은 주로 방향족 C=O ring stretching ($1160cm^{-1}$ $1384cm^{-1}$$1621cm^{-1}$)에서 흡착되는 것으로 관찰되었다. 이상의 결과를 미루어 볼 때 참깨 부산물로 제조한 biochar는 중금속 흡착제로서의 활용 가능성이 높을 것으로 판단된다.

Keywords

References

  1. Bae, S.Y. and E.S. Koh. 2011. Lead and zinc sorption on biochar of cabbage using hydrothermal carbonization. J. Kor. Soc. Environ. Analys. 14:228-233.
  2. Choi, I.W. 2004. Biosorption of heavy metals and development of biosorbent by using seaweeds. Master Science Thesis, Sunchon National University, Korea.
  3. Choi, I.W., S.U. Kim, D.C. Seo, B.H. Kang, B.K. Sohn, Y.S. Rim, J.S. Heo, and J.S. Cho. 2005. Biosoroption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida, Korean J. Envirion. Agric. 24:370-378. https://doi.org/10.5338/KJEA.2005.24.4.370
  4. Freundlich, H.M.F. 1906. Over the adsorption in solution. J. Phys. Chem. 57:385-470.
  5. Gilbert, M.M. 1996. Introduction to Environmental Engineering and Science. Prentice-Hall, NewJersey, USA.
  6. Jiang, T.Y., J. Jiang, R.K. Xu, and Z. Li. 2012. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249-256. https://doi.org/10.1016/j.chemosphere.2012.04.028
  7. KaduKova, J. and T. Komorova. 2002. Bopakumulacia a biocoppcia striebra riasou Chlorella kessleriz modelovych roztokov [Silcer bioaccumulation and biosorption by alga chlorella kessleri from model solutions]. Acta Metall Slovaca . 8(2):117-123.
  8. Kim, D.H. and S.B. Yim. 2012. Removal characteristics of heavy metals in acid wastewater by ceramics using natural zeolite and converter slag. J. KSEE. 34(4):239-246.
  9. Kim, S.U., I.W. Choi, D.C. Seo, M.H. Han, B.H. Kang, J.S. Heo, B.H. Sohn, and J.S. Cho. 2005. Biosorption of heavy metal in aqueous solution by heavy metal tolerant microorganism isolated from heavy metal contaminated soil. Korean J. Envirion. Agric. 24:379-385. https://doi.org/10.5338/KJEA.2005.24.4.379
  10. olodynska, D., R.Wnetrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapinski., and Z. Hubicki. 2012. Kinetic and adsoroptive characterization of biochar in metal ions removal. Chem. Eng. J. 197:295-305. https://doi.org/10.1016/j.cej.2012.05.025
  11. Langmuir, I. 1918. The adsorption of gases on plane surface of glass, mica and platimum. J. Ame. Chem. Soc. 40:1361-1403. https://doi.org/10.1021/ja02242a004
  12. Lee, D.B., K.B. Lee, S.B. Lee, S.S. Han, and T. Henmi. 1998. Sorption of heavy metals from the wastewater by the artificial zeolite. Korean J. Soil Sci. Fert. 31:61-66.
  13. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: science and technology, Earth-scan, USA.
  14. Lu, H., W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu. 2012. Relative distribution of $Pb^{2+}$ sorption mechanisms by sludge-derived biochar. Water research 46:854-862. https://doi.org/10.1016/j.watres.2011.11.058
  15. Na, C.K., M.Y. Han, and H.J. Park. 2011. Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents[I], Kor. Soc. Environ. Eng. 33(8):606-616. https://doi.org/10.4491/KSEE.2011.33.8.606
  16. NIAST. 1996. The official test methods for the fertilizer quality and sampling guideline, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  17. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA.
  18. Regmi, P., J.L.G. Moscoso, S. Kumar, X. Cao, J. Mao, and G. Schafran. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manage. 109:61-69. https://doi.org/10.1016/j.jenvman.2012.04.047
  19. Ruthven, D.W. 1984. Principles of Adsorption and Adsorption Process. John Wiley & Sons. U.S.A.
  20. Say, R., A. Denizli, and M.Y. Arica. 2001. Biosorption of cadmium(II), lead(II), and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour. Technol. 76:67-70. https://doi.org/10.1016/S0960-8524(00)00071-7
  21. Weber, J., and C.T. Miller. 1989. Organic chemical movement over and through soil. p. 305-334. In B.L., Sawhney, and K. Brown. (ed.) Reactions and movement of organic chemical, Soil Sci., Am. Madison., WI.
  22. Yang, R.T. 1987. Gas Separation by Adsorption Processes. Butterworths.

Cited by

  1. Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree vol.23, pp.3, 2015, https://doi.org/10.17137/korrae.2015.23.3.060
  2. Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1060
  3. Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.25
  4. Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.10
  5. Modification of Vermiculite for Use as a Floating Adsorbent for Copper Removal vol.17, pp.11, 2016, https://doi.org/10.14481/jkges.2016.17.11.5
  6. Effect of Sesame Straw Biochar Application on Soil Physics and Nitrous Oxide Emission in Upland Soil vol.49, pp.3, 2016, https://doi.org/10.7745/KJSSF.2016.49.3.259
  7. Feasibility Study of Different Biochars as Adsorbent for Cadmium and Lead vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.332
  8. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10
  9. Comparison of Heavy Metal Adsorption by Peat Moss and Peat Moss-Derived Biochar Produced Under Different Carbonization Conditions vol.226, pp.2, 2015, https://doi.org/10.1007/s11270-014-2275-4
  10. Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.169
  11. Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.489
  12. Adsorption of Pb(II) and Cu(II) by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times vol.14, pp.12, 2017, https://doi.org/10.3390/ijerph14121528