DOI QR코드

DOI QR Code

Contribution of Nutrient Flux through the Korea Strait to a Primary Production in the Warm Region of the East Sea

동해 난수역의 일차생산에 대한 대한해협 유입 영양염의 기여

  • Lee, Tongsup (Department of Oceanography, Pusan National University) ;
  • Rho, Taekeun (Department of Oceanography, Pusan National University)
  • Received : 2012.12.11
  • Accepted : 2013.05.06
  • Published : 2013.05.28

Abstract

In situ measurement of a primary production in East Sea, a marginal sea with a fair accessibility, is nonetheless an arduous task because of dynamic variability. In this study, we estimated the mean value of background (gross) primary production over the warm region of the East Sea based on a biogeochemical hypothesis. We propose an immiscible-shoaling hypothesis for the estimation of primary production, which assumes that primary production in the warm region occurred only by the nutrient supply through the Korea Strait. Annual primary production thus estimated is $209\;gC\;m^{-2}\;y^{-1}$, which is comparable to the satellite-based estimates of net primary production in the region. However, since this hypothesis assumes that primary production is based on only the new nutrients supplied to the system, primary production would increase by 40% if we release the assumption, and assume f = 0.6. This suggests that nutrient influx through the Korea Strait alone is more than enough to support primary production previously reported. Primary production may increase as much as two times if we considered other external perturbations excluded intentionally to estimate the background level of primary production, such as coastal upwelling, submerged ground water discharge, aeolian input, ocean dumping, and mixing by typhoons as well as the contribution of cyanobacteria that has not been quantified in the region. This implies the primary production in the warm region of the East Sea would be comparable to that of the Peru upwelling region with f = 0.6.

대륙주변해인 동해의 일차생산력은 조사하기 쉬운 듯하지만 해황의 역동적 변동성 때문에 현장 관측으로 파악하기 매우 어렵다. 이 연구에서는 난수역의 평균적인(총)일차생산 배경값을 생지화학적 가설에 기반하여 추정하였다. 계산에 사용된 비혼합-부상 가설은 일단 일차생산이 오로지 대한해협을 통해 수송된 영양염에 의해서만 일어난다고 가정했을 경우로서, 결과($209\;gC\;m^{-2}\;y^{-1}$)는 발표된 위성기반 순일차생산력과 대등한 것으로 나타났다. 그런데 일차생산이 100% 신생산에 의존한다고 가정했었기 때문에 이 구속을 풀어 신생산지표를 0.6이라 가정하면 일차생산력은 40% 가량 높아진다. 결과는 오로지 대한해협을 통해 유입되는 영양염만으로도 기존에 알려진 일차생산을 지지하고도 남음을 말해준다. 그런데 배경값을 구하기 위해 배제시켰던 여러 가지 변동 요인들, 예컨대 용승, 지하수 유입, 대기 유입, 해양 투기, 태풍 등 배경에 더 해지는 교란은 모두 일차생산을 추가로 부양하는 요인이고, 여기에 아직 정량화 되지 못한 초미소남세균의 광합성에 대한 기여까지 고려하게 되면 실제 일차생산력은 배경값의 두 배 이상도 가능할 것으로 추정된다. 이 경우에 일차생산력은 신생산지표가 0.6으로 알려진 페루 용승역과 비등한 규모가 된다.

Keywords

References

  1. 김동선, 김경희, 심정희, 유신재, 2007. 동해 울릉분지에서 봄과 여름동안 시계방향 와류가 영양염과 엽록소에 미치는 영향. 한국해양학회지 바다, 12: 280-286.
  2. 노태근, 이동섭, 김규범, 장경일, 나태희, 김경렬, 2012. 동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계. Ocean Polar Res., 34: 413-430. https://doi.org/10.4217/OPR.2012.34.4.413
  3. 물환경정보시스템-국립환경과학원. http://water.nier.go.kr/.
  4. 최정운, 2008. 장강유출수가 동해 표층 염분에 미치는 영향. 석사학위논문, 부산대학교, 81 pp.
  5. Ashjian, C.J., C.S. Davis, S.M Gallager and P. Alatalo, 2005. Characterization of the zooplankton community, size composition, and distribution in relation to hydrography in the Japan/East Sea. Deep-Sea Res. II, 52: 1363-1392. https://doi.org/10.1016/j.dsr2.2005.05.001
  6. Behrenfeld, M.J. and P.G. Falkowski, 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42: 1-20. https://doi.org/10.4319/lo.1997.42.1.0001
  7. Hahm, D. and K.-R. Kim, 2001. An estimation of the new production in the southern East Sea using helium isotopes. J. Kor. Soc. Oceanogr., 36: 19-26.
  8. Luz, B. and E. Barkan, 2000. Assessment of oceanic productivity with the triple isotope composition of dissolved oxygen. Science, 288: 2028-2031. https://doi.org/10.1126/science.288.5473.2028
  9. Kim, G., J.-W. Ryu and D.W. Hwang, 2008. Radium tracing of sub-marine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Marine Chemistry, 109: 307-317. https://doi.org/10.1016/j.marchem.2007.07.002
  10. Kim, T.-W., K. Lee, R.G Raymond, H.-D. Jeong and H.J. Jeong, 2010. Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science, 334: 505-509.
  11. Kortizinger, A., J.I. Hedges and P.D. Quay, 2001. Redfield ratio revisited: removing the biasing effect of anthropogenic $CO_2$. Limnol. Oceanogr., 46: 964-970. https://doi.org/10.4319/lo.2001.46.4.0964
  12. Moon, C.H., S.R. Yang, H.S. Yang, H.J. Cho, S.Y. Lee and S.Y. Kim, 1998. Regeneration processes of nutrients in the polar front area of the East Sea. IV. Chlorophyll a distribution, new production and the vertical diffusion of nitrate. J. Kor. Fish. Soc., 31: 267-285.
  13. Na, H., Y. Isoda, K. Kim, Y.H. Kim and S.J. Liu, 2009. Recent observations in the straits of the East/Japan Sea: a review of hydrography, currents and volume transports. J. Mar. Syst., 78: 200-205. https://doi.org/10.1016/j.jmarsys.2009.02.018
  14. Takikawa, T. and J.-H. Yoon, 2005. Volume transport through the Tsushima Straits estimated from sea level difference. J. Oceanogr., 61: 699-708. https://doi.org/10.1007/s10872-005-0077-4
  15. Zhang, J., S.M Liu, J.L. Ren, Y. Wu and G.L. Zhang, 2007. Nutrient gradients from the eutrophic Changjiang Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr., 74: 449-478. https://doi.org/10.1016/j.pocean.2007.04.019
  16. Whang, B., 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estu. Coas. Shelf Sci., 69: 471-477. https://doi.org/10.1016/j.ecss.2006.05.010
  17. Yamada, K., J. Ishizaka and H. Nagota, 2005. Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002. J. Oceanogr., 61: 857-869. https://doi.org/10.1007/s10872-006-0005-2
  18. Yanagi, T., 2002. Water, salt, phosphorus and nitrogen budgets of the Japan Sea. J. Oceanogr., 58: 797-804. https://doi.org/10.1023/A:1022815027968
  19. Yoo, S. and J. Park, 2009. Why is the southwest the most productive region of the East Sea/ Sea of Japan? J. Mar. Syst., 78: 301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014
  20. Yoon, J.-E., J. Park and S. Yoo, 2012. Comparison of primary productivity algorithms for Korean waters. Ocean Sci. J., 47: 473-487. https://doi.org/10.1007/s12601-012-0043-1

Cited by

  1. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea) vol.167, 2017, https://doi.org/10.1016/j.jmarsys.2016.11.001
  2. Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.156