DOI QR코드

DOI QR Code

Korean Ocean Forecasting System: Present and Future

한국의 해양예측, 오늘과 내일

  • Kim, Young Ho (Ocean Circulation & Climate Research Division, Korea Institute of Ocean Science & Technology) ;
  • Choi, Byoung-Ju (Department of Oceanography, Kunsan National University) ;
  • Lee, Jun-Soo (Fishery and Ocean Information Division, National Fisheries Research and Development Institute) ;
  • Byun, Do-Seong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Kang, Kiryong (Global Environment System Research Lab., National Institute of Meteorological Research) ;
  • Kim, Young-Gyu (Naval Systems Research & Development Institute, Agency for Defense Development) ;
  • Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University)
  • 김영호 (한국해양과학기술원 해양순환.기후연구부) ;
  • 최병주 (군산대학교 해양학과) ;
  • 이준수 (국립수산과학원 수산해양종합정보과) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 강기룡 (국립기상연구소 지구환경시스템연구과) ;
  • 김영규 (국방과학연구소) ;
  • 조양기 (서울대학교 지구환경과학부)
  • Received : 2013.02.08
  • Accepted : 2013.04.19
  • Published : 2013.05.28

Abstract

National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

경제 발전에 따라 레저, 해운, 수산, 국방, 해난사고 등 해양을 이용하는 활동이 증가하면서 해양예보에 대한 수요가 크게 증가하고 있다. 기상에서 해양의 역할이 새롭게 인식되면서 정확한 기상 및 기후변화를 예측하기 위한 해양 예측의 필요성도 증가하고 있다. 사회적인 요구와 관련 기술의 발전에 힘입어 선진국을 중심으로 해양예측시스템이 수립되어 왔다. 이 연구에서는 세계적으로 해양예측시스템을 발전시키고 확산시킨 국제협력프로그램 GODAE(Global Ocean Data Assimilation Experiment)의 진행과정과 기여를 정리하였다. 그리고 현재 해양예측시스템을 운용 중인 미국, 프랑스, 영국, 이탈리아, 노르웨이, 호주, 일본, 중국이 해양예측시스템을 구축하면서 세웠던 목적과 비전, 역사, 연구 동향을 조사하고 각 나라의 해양예측시스템 현황을 비교하였다. 우리보다 앞서 해양예측시스템을 구축하여 사용하고 있는 나라들이 취한 개발 전략의 특징은 다음과 같이 요약해 볼 수 있다. 첫째, 국가적인 역량을 집중하여 성공적인 현업 해양예측시스템을 구축하였다. 둘째, 국제적인 프로그램을 통해 선진 기술을 공유하고 상호 발전시켰다. 셋째, 각 기관의 역할과 고유 목적에 따라 기여분야를 나눠가졌다. 국내에서도 최근 현업 해양예측시스템에 대한 수요가 증대되고 있다. 기상청, 국립해양조사원, 국립수산과학원, 국방과학연구소의 해양예측시스템 개발에 관한 현재 상황과 향후 장기적 계획을 조사하였다. 국지 해양예측 또는 기후예측 모델을 위한 개방경계 초기장 제공이 가능한 광역의 정확도 높은 해양예측시스템을 구축하기 위해서는 국내의 유관 기관 간 협력 관계가 필수적이다. 이를 위해 관련 기관과 연구자들이 함께 참여하는 컨소시엄 형성이 바람직하다. 컨소시엄을 통해 경쟁력 높은 예측 모델과 시스템을 구축할 수 있으며, 제한된 재원을 효율적으로 활용할 수 있고, 연구 개발 인력이 전문분야에 집중할 수 있으며, 중복 투자를 막고 각 기관은 고유 업무에 역량을 집중할 수 있다. 비록 해양예보에 있어 우리나라가 현 단계로는 국제적인 수준에 뒤쳐져 있지만, 각 유관 기관들이 고유 업무를 정립하고 국가적인 역량을 집중하여 현업 해양예측시스템을 공동 개발하면 곧 추격하여 해양예보 분야를 선도할 수 있을 것이다.

Keywords

References

  1. ADD (Agency for Defense Development), 2005. Research on the Data Assimilation Methods for the Real-time Forecast Model of the East Sea, p. 256.
  2. Bahurel, P., MERCATOR Project Team, 2006. MERCATOR Ocean Global to Regional Ocean Monitoring and Forecasting, In Ocean Weather Forecasting : An Integrated View of Oceanography, eds, E.P. Chassignet and J. Verron, 381-395.
  3. Barron, C.N., A.B. Kara, H.E. Hurlburt, C. Rowley, and L.F. Smedstad, 2004. Sea surface height predictions from the global Navy Coastal Ocean Model (NCOM) during 1998-2001. J. Atmos. Oceanic Technol., 21: 1876-1894. https://doi.org/10.1175/JTECH-1680.1
  4. Bell, M.J., R. Barciela, A. Hines, M. Martin, A. Sellar, and D. Storkey, 2006. The Forecasting Ocean Assimilation Model (FOAM) System. pp. 397-411 in Ocean Weather Forecasting : An Integrated View of Oceanography. E.P. Chassignet and J. Verron, eds, Springer, 577 pp.
  5. Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4: 55-58. https://doi.org/10.1016/S1463-5003(01)00012-9
  6. Bleck et al. 1992. Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceangr., 22: 1486-1505. https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2
  7. Bleck, R., and E.P. Chassignet, 1994. Simulating the oceanic circulation with isopycnic-coordinate models. pp. 17-39 in The Oceans: Physical-Chemical Dynamics and Human Impact. S.K. Majumdar, E.W. Miller, G.S. Forbes, R.F. Schmalz, and A.A. Panah, eds, The Pennsylvania Academy of Science.
  8. Blumberg, A.F. and G.L. Mellor, 1987. A description of a three-dimensional coastal ocean circulation model. pp. 1-16 in Three-Dimensional Coastal ocean Models. N. S. Heaps, eds, American Geophysical Union, Washington D.C., Coastal and Estuarine Series 4.
  9. Blumberg, A.F., R.P. Signell, and H.L. Jenter, 1993. Modeling transport processes in the coastal ocean, J. Mar. Envir. Eng., 1: 31-52.
  10. Brasseur P., P. Bahurel, L. Bertino, F. Birol, J.-M. Brankart, N. Ferry, S. Losa, E. Remy, J. Schroter, S. Skachko, and others. 2005. Data assimilation for marine monitoring and prediction: The Mercator operational assimilation systems and the MERSEA developments. Q. J. Roy. Meteo. Soc., 131: 3,561-3,582. https://doi.org/10.1256/qj.05.142
  11. Bryan, 1969, a numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4: 347-376. https://doi.org/10.1016/0021-9991(69)90004-7
  12. Chassignet, E.P., and J. Verron, eds. 2006. Ocean Weather Forecasting: An Integrated View of Oceanography, Springer, 577 pp.
  13. Chassignet, E.P., L.T. Smith, G.R. Halliwell, and R. Bleck, 2003: North Atlantic simulation with the HYbrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference density, and thermobaricity. J. Phys. Oceanogr., 33: 2504-2526. https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
  14. Chen, C.H. Liu, and R.C. Beardsley, 2003. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J. Atmos. Oceanic Technol., 20: 159-186. https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
  15. Cheong, S.-H., K.-Y. Byun, and T.-Y. Lee, 2006. Classification of snowfalls over the Korean Peninsula based on developing mechanism (in Korean with English abstract). Atmosphere, 16: 33-48.
  16. Cho, Y.-K. M.-O. Kim and B.-C. Kim, 2000. Sea fog around Korean Peninsula. J. Appl. Meteorol., 39(12): 2473-2479. https://doi.org/10.1175/1520-0450(2000)039<2473:SFATKP>2.0.CO;2
  17. Choi, B.-J., D.-S. Byun and K.-H. Lee, 2012. Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern. The Sea, 17(4): 225-242. https://doi.org/10.7850/jkso.2012.17.4.225
  18. Choi, B.-J. Y.-W. Park and K.-M. Kwon, 2008. Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007. Ocean and Polar Research, 30(4): 453-466. https://doi.org/10.4217/OPR.2008.30.4.453
  19. Chu, P.C., Wang, G., Fan, C., 2004. Evaluation of the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) Using South China Sea Monsoon Experiment (SCSMEX) Data. J. Oceanogr., 60: 1007-1021. https://doi.org/10.1007/s10872-005-0009-3
  20. Cox, M.D., 1984. A Primitive Equation Three-Dimensional Model of the Ocean. Tech. Rep. 1. GFDL Ocean Group, Princeton University, New Jersey.
  21. Cummings, J.A., 2005. Operational multivariate ocean data assimilation. Q. J. Roy. Meteo. Soc., 131: 3,583-3,604. https://doi.org/10.1256/qj.05.105
  22. Cummings, J.A., L. Bertino, P. Brasseur, I. Fukumori, M. Kamachi, M.J. Martin, K. Mogensen, P. Oke, C.E. Testut, J. Verron, and A. Weaver, 2009. Ocean data assimilation systems for GODAE. Oceanography, 22(3): 96-109, doi:10.5670/oceanog.2009.69.
  23. Dai, A., and K.E. Trenberth. 2003. New estimates of continental discharge and oceanic freshwater transport. In the Proceeding of Symposium on Observing and Understanding the Variability of Water in Weather and Climate, February 9-13, 2003, Long Beach, CA.
  24. Dombrowsky, E., L. Bertino, G.B. Brassington, E.P. Chassignet, F. Davidson, H.E. Hurlburt, M. Kamachi, T. Lee, M.J. Martin, S. Mei, and M. Tonani, 2009. GODAE systems in operation. Oceanography, 22(3): 80-95, doi:10.5670/oceanog.2009.68.
  25. Evensen, G. 2006. Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp.
  26. Fox, D.N., W.J. Teague, C.N. Barron, M.R. Carnes, and C.M. Lee, 2002. The modular ocean data assimilation system (MODAS). J. Atmos. Oceanic Technol., 19: 240-252. https://doi.org/10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
  27. Fujii, Y., and M. Kamachi, 2003. Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes. J. Geophys. Res., 108(C9): 3297, doi:10.1029/2002JC001745.
  28. Haidvogel, D.B., H.G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A.F. Shchepetkin, 2000. Model Evaluation Experiments in the North Atlantic Basin: Simulations in Nonlinear Terrain-Following Coordinates, Dyn. Atmos. Oceans., 32: 239-281. https://doi.org/10.1016/S0377-0265(00)00049-X
  29. KHOA (Korea Hydrographic and Oceanographic Administration), 2011. A detailed plan formulation for running Operational Oceanographic System. p. 70.
  30. KHOA (Korea Hydrographic and Oceanographic Administration), 2012. Establishing the National Numerical Ocean Modelling Infrastructure. p. 275.
  31. Kim, C.-S. Y.-K. Cho, B.-J. Choi, K.T. Jung, and S.H. You, 2013. Improving a prediction system for oil spills in the Yellow Sea: Effect of tides on subtidal flow. Mar. Pollut. Bull. in press.
  32. Kim, Y.H., K.-I. Chang, J.J. Park, S.K. Park, S.-H. Lee, Y.-G. Kim, K.T. Jung, and K. Kim, 2009. Comparison between a reanalyzed product by 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea, J. Mar. Syst., doi:10.1016/j.jmarsys.2009.02.017.
  33. KORDI (Korea Ocean Research & Development), 1998. Operational Korea Ocean Prediction System, p. 306.
  34. Lee, S.-H., D.-S. Byun, B.-J. Choi and E. Lee, 2009. Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea. The Sea, 14(4): 195-204.
  35. Martin, M.J., A. Hines, and M.J. Bell, 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Q. J. Roy. Meteo. Soc., 133: 981-995. https://doi.org/10.1002/qj.74
  36. Mellor, G.L., 1996. User's guide for a three-dimensional, primitive equation, numerical ocean model, 35 pp., Prog. in Atmos. and Ocean. Sci., Princeton University.
  37. MLTM (Minister of Land, Transport and Maritime Affairs), 2012, Marine Accident Data [cited 2012.12.14] .
  38. Oke, P.R., G.B. Brassington, D.A. Griffin, and A. Schiller. 2008. The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modell., 21: 46-70. https://doi.org/10.1016/j.ocemod.2007.11.002
  39. Rhodes, R.C., H.E. Hurlburt, A.J. Wallcraft, C.N. Barron, P.J. Martin, E.J. Metzger, J.F. Shriver, and D.S. Ko, 2002. Navy real-time global modeling systems. Oceanography, 15: 29-43. https://doi.org/10.5670/oceanog.2002.34
  40. Seo, G.-H., B.-J. Choi, Y.-K. Cho, Y.H. Kim, S. Kim, 2010. Assimilation of Sea Surface Temperature in the Northwestern Pacific Ocean and its Marginal Seas using the Ensemble Kalman Filter, Ocean Sci. J., 45(4): 225-242, DOI10.1007/s12601-010-0021-4
  41. Shchepetkin, A.F. and J.C. McWilliams, 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography-following coordinates ocean model, Ocean Modell., 9: 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  42. Smith, D.M., S. Cusack, A.W. Colman, C.K. Folland, G.R. Harris, J.M. Murphy, 2007. Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model, Science, 317(5839): 796-799. https://doi.org/10.1126/science.1139540
  43. Wallcraft, A.J. and D.R. Moore, 1997. The NRL Layered Ocean Model. Parallel. Comput., 23: 2227-2242. https://doi.org/10.1016/S0167-8191(97)00111-7
  44. Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B.P. Kirtman, and F.-F. Jin, 2009. El Nino in a changing climate. Nature, 461(24): 511-514, doi:10.1038/nature08316.

Cited by

  1. 기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교 vol.28, pp.1, 2013, https://doi.org/10.14191/atmos.2018.28.1.099
  2. 고해상도 기후예측시스템의 표층해류 예측성능 평가 vol.40, pp.3, 2013, https://doi.org/10.4217/opr.2018.40.3.099