DOI QR코드

DOI QR Code

A pilot-scale $TiO_2$ photocatalytic system for removing gas-phase elemental mercury at Hg-emitting facilities

  • Cho, Jae Han (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Eomb, Yujin (YS Institute of Environmental Technology, Engineering Research Park, Yonsei University) ;
  • Jeon, Seok Ho (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Tai Gyu (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Published : 2013.01.25

Abstract

A pilot-scale $TiO_2$ photocatalytic system using common household fluorescent lamps was tested at a real combustion facility for its ability to control $Hg^0$ emissions. An $Hg^0$ removal efficiency of greater than 90% was achieved under optimum conditions. The photocatalytic reaction units connected in series were more efficient than those connected in parallel. Acid components of the flue gas, such as NO and $H_2O$, exhibited significant negative effects on the $Hg^0$ removal efficiency. There was no difference in $Hg^0$ removal efficiency between the systems employing mono-wavelength and tri-wavelength fluorescent lamps, and the efficiency was enhanced by increasing the amount of irradiation.

Keywords

References

  1. A. Glodek, J.M. Pacyna, Atmospheric Environment 43 (2009) 5668. https://doi.org/10.1016/j.atmosenv.2009.07.041
  2. P. Hajeb, S. Jinap, A.B. Fatimah, B. Jamilah, International Journal of Environment Analytical Chemistry 90 (2010) 812. https://doi.org/10.1080/03067310903131941
  3. T. Kaghazchi, H. ShamsiJazeyi, Journal of Industrial and Engineering Chemistry 17 (2011) 608. https://doi.org/10.1016/j.jiec.2011.05.004
  4. H. ShamsiJazeyi, T. Kaghazchi, Journal of Industrial and Engineering Chemistry 16 (2010) 852. https://doi.org/10.1016/j.jiec.2010.03.012
  5. Q. Wan, L. Duan, K. He, J. Li, Chemical Engineering Journal 170 (2011) 512. https://doi.org/10.1016/j.cej.2010.11.060
  6. S. Wu, M. Ozaki, M.A. Uddin, E. Sasaoka, Fuel 87 (2008) 467. https://doi.org/10.1016/j.fuel.2007.06.016
  7. J.C. Hower, C.H. Senior, E.M. Suuberg, R.H. Hurt, J.L. Wilcox, E.S. Olson, Progress in Energy and Combustion 36 (2010) 510. https://doi.org/10.1016/j.pecs.2009.12.003
  8. C. Wu, Y. Cao, Z. Dong, C. Cheng, H. Li, W. Pan, Journal of Environment Science 22 (2010) 277.
  9. K. Sundseth, J.M. Pacyna, E.G. Pacyna, J. Munthe, M. Belhaj, S. Astrom, Journal of Cleaner Production 18 (2010) 386. https://doi.org/10.1016/j.jclepro.2009.10.017
  10. H.K. Choi, S.H. Lee, S.S. Kim, Fuel Processing Technology 90 (2009) 107. https://doi.org/10.1016/j.fuproc.2008.08.001
  11. Y.G. Lee, J.W. Park, J.H. Kim, B.R. Min, J. Jurng, J. Kim, T.G. Lee, Chemistry Letters 33 (2004) 36. https://doi.org/10.1246/cl.2004.36
  12. T.G. Lee, P. Biswas, E. Hedrick, AIChE Journal 47 (2001) 954. https://doi.org/10.1002/aic.690470418
  13. C.Y. Wu, T.G. Lee, G. Tyree, E. Arar, P. Biswas, Environmental Engineering Science 15 (1998) 137. https://doi.org/10.1089/ees.1998.15.137
  14. Y. Li, C.Y. Wu, Environmental Science and Technology 40 (2006) 6444. https://doi.org/10.1021/es061228a
  15. Y. Li, C.Y. Wu, Environmental Engineering Science 24 (2007) 3. https://doi.org/10.1089/ees.2007.24.3
  16. Y. Li, P. Murphy, C.Y. Wu, Fuel Processing Technology 89 (2008) 567. https://doi.org/10.1016/j.fuproc.2007.10.009
  17. T.-D. Nguyenphan, H. Pham, S. Kim, E.-S. Oh, E.J. Kim, E.W. Shin, Journal of Industrial and Engineering Chemistry 16 (2010) 823. https://doi.org/10.1016/j.jiec.2010.05.005
  18. G.W. Lee, B.H. Shon, J.G. Yoo, J.H. Jung, K.J. Oh, Journal of Industrial and Engineering Chemistry 14 (2008) 457. https://doi.org/10.1016/j.jiec.2008.02.013
  19. Y.O. Park, K.W. Lee, Y.W. Rhee, Journal of Industrial and Engineering Chemistry 15 (2009) 36. https://doi.org/10.1016/j.jiec.2008.07.009
  20. J. Wei, Y. Luo, P. Yu, B. Cai, H. Tan, Journal of Industrial and Engineering Chemistry 15 (2009) 16. https://doi.org/10.1016/j.jiec.2008.07.010
  21. G.A. Norton, D.E. Eckels, Environmental Science and Technology 36 (2002) 1767. https://doi.org/10.1021/es0113899
  22. S. Niksa, J.J. Helble, N. Fujiwara, Environmental Science and Technology 35 (2001) 3701. https://doi.org/10.1021/es010728v
  23. J.M. Stokke, D.W. Mazyck, Air and Waste Management Association 58 (2008) 530. https://doi.org/10.3155/1047-3289.58.4.530
  24. E. Pitoniak, C.Y. Wu, D.W. Mazyck, K.W. Powers, W. Sigmund, Environmental Science and Technology 39 (2005) 1269. https://doi.org/10.1021/es049202b

Cited by

  1. A Facile Esterification Reaction Towards the Synthesis of Poly(methyl methacrylate)/Titanium Dioxide Nanocomposites vol.597, pp.1, 2014, https://doi.org/10.1080/15421406.2014.932223
  2. Removal of elemental mercury by TiO2doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms vol.23, pp.6, 2013, https://doi.org/10.1007/s11356-015-5738-2
  3. Comprehensive Evaluation of Mercury Photocatalytic Oxidation by Cerium-Based TiO2 Nanofibers vol.56, pp.14, 2013, https://doi.org/10.1021/acs.iecr.6b04995
  4. Photochemical Removal of SO2 over TiO2-Based Nanofibers by a Dry Photocatalytic Oxidation Process vol.31, pp.9, 2017, https://doi.org/10.1021/acs.energyfuels.7b01514
  5. Influence of Fe/C codoped on structural, optical, and photocatalytic properties of TiO2 powders by sol‐gel method vol.32, pp.2, 2013, https://doi.org/10.1002/poc.3890