DOI QR코드

DOI QR Code

Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors

  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, BK21-E2M, Chungnam National University) ;
  • Jeong, Euigyung (Department of Applied Chemistry and Biological Engineering, BK21-E2M, Chungnam National University) ;
  • Kim, Yesol (Department of Applied Chemistry and Biological Engineering, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, BK21-E2M, Chungnam National University)
  • Published : 2013.07.25

Abstract

To investigate the relationship between textural properties and electrochemical properties, activated carbon nanofibers were manufactured using an electrospinning process followed by chemical activation using KOH or NaOH. The specific surface area of the KOH-activated carbon nanofibers was higher than that of NaOH-activated carbon nanofibers; however, the total pore volume and mesopore volume of the NaOH-activated carbon nanofibers were greater than those of the KOH-activated carbon nanofibers when the same number of moles of KOH and NaOH were used. The specific capacitances increased as the specific surface area and pore volume of the activated carbon nanofibers were increased. However, the specific capacitance obtained at a high scan rate (50 mV/s) and the retained capacitance of the activated carbon nanofibers increased with increasing total pore and mesopore volume, especially for mesopores with diameters of 2-4 nm.

Keywords

References

  1. P. Sharma, T.S. Bhatti, Energy Convers. Manag. 51 (2010) 2901. https://doi.org/10.1016/j.enconman.2010.06.031
  2. M.J. Jung, E. Jeong, S.I. Lee, Y.S. Lee, J. Ind. Eng. Chem. 18 (2012) 642. https://doi.org/10.1016/j.jiec.2011.11.055
  3. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157 (2006) 11. https://doi.org/10.1016/j.jpowsour.2006.02.065
  4. W. Qiao, S.H. Yoon, I. Mochida, Energy Fuels 20 (2006) 1680. https://doi.org/10.1021/ef050313l
  5. S.G. Lee, K.H. Park, W.G. Shim, M.S. balathanigaimani, H. Moon, J. Ind. Eng. Chem. 17 (2011) 450. https://doi.org/10.1016/j.jiec.2010.10.025
  6. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, A. Dugast, J. Power Sources 79 (1997) 37.
  7. M. Endo, Y.J. Kim, H. Ohta, K. Ishii, T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M.S. Dresselhaus, Carbon 40 (2002) 2613. https://doi.org/10.1016/S0008-6223(02)00191-4
  8. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765. https://doi.org/10.1016/S0008-6223(03)00141-6
  9. S.H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, Carbon 42 (2004) 1723. https://doi.org/10.1016/j.carbon.2004.03.006
  10. G. Zou, D. Zhang, C. Dong, H. Li, K. Xiong, L. Fei, Y. Qian, Carbon 44 (2006) 828. https://doi.org/10.1016/j.carbon.2005.10.035
  11. Y.J. Yoon, H.K. Baik, Diam. Relat. Mater. 10 (2001) 1214. https://doi.org/10.1016/S0925-9635(00)00585-9
  12. Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, H. Fong, Polymer 50 (2009) 2999. https://doi.org/10.1016/j.polymer.2009.04.058
  13. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46 (2007) 5670. https://doi.org/10.1002/anie.200604646
  14. I. Chun, D.H. Reneker, H. Fong, X. Fang, J. Deitzel, N.B. Tan, K. Kearns, J. Adv. Mater. 31 (1999) 36.
  15. E. Zussman, X. Chen, W. Ding, L. Calabri, D.A. Dikin, J.P. Quintana, R.S. Ruoff, Carbon 43 (2005) 2175. https://doi.org/10.1016/j.carbon.2005.03.031
  16. A.B. Fuertes, G. Marban, D.M. Nevskaia, Carbon 41 (2003) 87. https://doi.org/10.1016/S0008-6223(02)00274-9
  17. S.C. Kang, J.S. Im, Y.S. Lee, Carbon Lett. 12 (2011) 21. https://doi.org/10.5714/CL.2011.12.1.021
  18. M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Carbon 41 (2003) 267. https://doi.org/10.1016/S0008-6223(02)00279-8
  19. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332 (2011) 1537. https://doi.org/10.1126/science.1200770
  20. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, second ed., Academic, New York, 1982.
  21. J.B. Condon, Surface Area, Porosity Determinations by Physisorption - Measurements and Theory, first ed., Elsevier Science, Oxford, 2006.
  22. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603. https://doi.org/10.1351/pac198557040603
  23. Y. Guo, J. Qi, S. Yang, K. Yu, Z. Wang, H. Xu, Mater. Chem. Phys. 78 (2003) 132. https://doi.org/10.1016/S0254-0584(02)00302-4
  24. Y. Guo, S. Yang, Z. Wang, Mater. Chem. Phys. 74 (2002) 320. https://doi.org/10.1016/S0254-0584(01)00473-4
  25. H.A. Andreas, B.E. Conway, Electrochim. Acta 51 (2006) 6510. https://doi.org/10.1016/j.electacta.2006.04.045
  26. P.H. Tan, C.Y. Hu, F. Li, S. Bai, P.X. Hou, H.M. Cheng, Carbon 40 (2002) 1131.
  27. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon 45 (2007) 1757. https://doi.org/10.1016/j.carbon.2007.05.004
  28. M. Ramani, B.S. Haran, R.E. White, B.N. Popov, J. Electrochem. Soc. 148 (2001) A374. https://doi.org/10.1149/1.1357172
  29. G.Z. Nong, H. Wang, W.C. Li, Asia-Pac. J. Chem. Eng. 4 (2009) 654. https://doi.org/10.1002/apj.311
  30. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19 (2009) 438. https://doi.org/10.1002/adfm.200801236
  31. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, J. Electrochem. Soc. 148 (2001) A910. https://doi.org/10.1149/1.1382589
  32. L. Eliad, G. Salitra, A. Soffer, D. Aurbach, J. Phys. Chem. B 105 (2001) 6880. https://doi.org/10.1021/jp010086y
  33. M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, K. Ishii, Carbon Lett. 1 (2001) 117.
  34. D. Qu, J. Power Sources 99 (2002) 1.
  35. C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Beguin, Mater. Sci. Eng. B: Adv. Funct. Solid-State Mater. 108 (2004) 148. https://doi.org/10.1016/j.mseb.2003.10.096
  36. K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Beguin, J. Phys. Chem. Solids 65 (2004) 287. https://doi.org/10.1016/j.jpcs.2003.10.024
  37. A.B. Fuertes, F. Pico, J.M. Rojo, J. Power Sources 133 (2004) 329. https://doi.org/10.1016/j.jpowsour.2004.02.013

Cited by

  1. 폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향 vol.37, pp.5, 2013, https://doi.org/10.7317/pk.2013.37.5.592
  2. Carbon nanofiber as a complementary functional material for use in the energy and environment fields vol.2013, pp.260, 2013, https://doi.org/10.7209/tanso.2013.313
  3. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes vol.2, pp.22, 2014, https://doi.org/10.1039/c4ta00333k
  4. 열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향 vol.26, pp.5, 2013, https://doi.org/10.14478/ace.2015.1085
  5. Advanced Fabrication of Chemically Bonded Graphene/TiO2 Continuous Fibers with Enhanced Broadband Photocatalytic Properties and Involved Mechanisms Exploration vol.6, pp.None, 2013, https://doi.org/10.1038/srep38066
  6. Preparation and characterization of chemically activated carbon materials for CO2 capture vol.17, pp.1, 2013, https://doi.org/10.5714/cl.2016.17.1.085
  7. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2013, https://doi.org/10.1002/aenm.201601301
  8. 고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리 vol.28, pp.6, 2013, https://doi.org/10.14478/ace.2017.1079
  9. Large scale production of polyacrylonitrile-based porous carbon nanospheres for asymmetric supercapacitors vol.6, pp.16, 2018, https://doi.org/10.1039/c8ta01155a
  10. Anatase TiO2-doped activated carbon fibers prepared by ultrasonication and their capacitive deionization characteristics vol.27, pp.None, 2018, https://doi.org/10.5714/cl.2018.27.064
  11. Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs vol.27, pp.None, 2013, https://doi.org/10.5714/cl.2018.27.112
  12. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering vol.11, pp.8, 2013, https://doi.org/10.3390/ma11081478
  13. Effects of Sodium Alginate on the Composition, Morphology, and Electrochemical Properties of Electrospun Carbon Nanofibers as Electrodes for Supercapacitors vol.7, pp.1, 2013, https://doi.org/10.1021/acssuschemeng.8b04191
  14. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers vol.25, pp.4, 2019, https://doi.org/10.1007/s11581-018-2675-3
  15. Tris‐(8‐hydroxyquinoline) aluminium thin film as saturable absorber for passively Q‐switched erbium‐doped fibre laser vol.13, pp.5, 2019, https://doi.org/10.1049/iet-opt.2018.5149