DOI QR코드

DOI QR Code

Use and recycling of Ca-alginate biocatalyst for removal of phenol from wastewater

  • Ali, Oumessaad (National Polytechnic School, Environmental Engineering Department, Laboratory of Sciences and Environmental Techniques) ;
  • Namane, Abdelkader (National Polytechnic School, Environmental Engineering Department, Laboratory of Sciences and Environmental Techniques) ;
  • Hellal, Amina (National Polytechnic School, Environmental Engineering Department, Laboratory of Sciences and Environmental Techniques)
  • Published : 2013.07.25

Abstract

The objective of the current work is the exhaustive study of the phenol degradation potential in both free cell and immobilized bacterium (Pseudomonas aeruginosa) in calcium alginate beads (biocatalyst) was investigated for its ability to grow and degrade phenol as its sole source of carbon and energy. The biodegradation assays were performed in liquid medium with phenol being the only substrate. It was found that P. aeruginosa is able to degrade phenol up to $500mgL^{-1}$ in 50 h as free cell and $900mgL^{-1}$ in 80 h when immobilized in the calcium alginate beads. However, for $1200mgL^{-1}$ concentration, the immobilized cells took much more time (290 h) for a complete degradation. The reuse of these beads in different concentrations of phenol ($100-900mgL^{-1}$) showed that the cells keep their phenol degradation ability up to $900mgL^{-1}$in 78.5 h with 99% removal efficiency. Similarly, the reuse of the biocatalyst in the same initial phenol concentration ($500mgL^{-1}$), allows us to get 9 cycles.

Keywords

References

  1. K.M. Basha, A. Rajendran, V. Thangavelu, Asian Journal of Experimental Biology 1 (2010) 219.
  2. A. Bodalo, E. Gomez, A.M. Hidalgo, M. Gomez, M.D. Murcia, I. Lopez, Desalination 246 (2009) 307.
  3. J. Mamatha, A.B. Vedamurthy, S.D. Shruthi, Journal of Microbiology and Biotechnology Research 2 (2012) 426.
  4. F. Zhang, M. Li, W. Li, C. Feng, Y. Jin, X. Guo, J. Cui, Chemical Engineering Journal 175 (2011) 349. https://doi.org/10.1016/j.cej.2011.09.122
  5. A. Nuhoglu, B. Yalcin, Process Biochemistry 40 (2005) 1233, http://dx.doi.org/10.1016/j.procbio.2004.04.003.
  6. B. Marrot, A. Barrios-Martinez, P. Moulin, Biochemical Engineering Journal 30 (2006) 174, http://dx.doi.org/10.1016/j.bej.2006.03.006.
  7. World Health Organization, Guidelines for Drinking Water Quality. Vol. II: Health Criteria and Supporting Information, World Health Organization, Geneva, Switzerland, 1984.
  8. Environmental Protection Agency EPA method 604, Phenols in Federal Register, Part VIII, 40 CFR Part 136 Washington, DC, 1984, p. 58.
  9. R. Pishgar, G. Najafpour, B.N. Neya, N. Mousavi, Z. Bakhshi, Iranica Journal of Energy and Environment 2 (2011) 348, http://dx.doi.org/10.5829/idosi.ijee.02.04.2361.
  10. D. Kotresha, E.G.M. Vidyasagar, World Journal of Microbiology and Biotechnology 24 (2008) 541, http://dx.doi.org/10.1007/s11274-007-9508-2.
  11. A. Al-Mahin, M.A.Z. Chowdhury, A.N.M. Fakhruddin, in: Proceedings of the International Conference on Future Environment and Energy, IPCBEE, vol. 28, IACSIT Press, Japan, 2010.
  12. P.A. Sujith, N.K. Sahoo, K. Pakshirajan, P.K. Ghosh, International Conference on Future Environment and Energy, IPCBEE, vol. 28, 2012, p. 134.
  13. Y. Wang, Y. Tian, B. Han, H.B. Zhao, J. Bi, B.L. Cai, Journal of Environmental Sciences 19 (2007) 222. https://doi.org/10.1016/S1001-0742(07)60036-9
  14. C.E. Paisio, M.A. Talano, P.S. Gonzalez, V.D. Busto, J.R. Talou, E. Agostini, Environmental Science and Pollution Research 19 (2012) 3430. https://doi.org/10.1007/s11356-012-0870-8
  15. K. Fahmida, A.N.M. Fakhruddin, Reviews in Environmental Science and Biotechnology 11 (2012) 261. https://doi.org/10.1007/s11157-012-9268-9
  16. V. Arutchelvan, V. Kanakasabai, R. Elangovan, S. Nagarajan, V. Muralikrishnan, Journal of Hazardous Materials 129 (2006) 216. https://doi.org/10.1016/j.jhazmat.2005.08.040
  17. S. Chakraborty, T. Bhattacharya, T.N. Patel, K.K. Tiwari, Journal of Environmental Biology 31 (2010) 293.
  18. V. Sridevi, M.V.V. Chandana Lakshmi, M. Manasa, M. Sravani, International Journal of Advanced Science and Technology 2 (2012) 695.
  19. M.H. El-Naas, S. Al-Zuhair, S. Makhlouf, Journal of Industrial and Engineering Chemistry 16 (2010) 267. https://doi.org/10.1016/j.jiec.2009.09.072
  20. J. Galindez-Mayer, J. Ramon-Gallegos, N. Ruiz-Ordaz, C. Juarez-Ramirez, A. Salmero n-Alcocer, H.M. Poggi-Varaldo, Biochemical Engineering Journal 38 (2008) 147. https://doi.org/10.1016/j.bej.2007.06.011
  21. Z. Duan, Environment Protection Engineering 37 (2011) 53.
  22. A.M. Hannaford, C. Kuek, Journal of Industrial Microbiology and Biotechnology 22 (1999) 121. https://doi.org/10.1038/sj.jim.2900617
  23. O.J. Hao, M.H. Kim, E.A. Seagren, H. Kim, Chemosphere 46 (2002) 797. https://doi.org/10.1016/S0045-6535(01)00182-5
  24. C.O. Nweke, G.C. Okpokwasili, Journal of Environmental Chemistry and Ecotoxicology 2 (2010) 020.
  25. T.P. Chung, H.Y. Tseng, R.S. Juang, Process Biochemistry 38 (2003) 1497, http://dx.doi.org/10.1016/S0032-9592(03)00038-4.
  26. Jagannath C. Kadakol, Chandrappa M. Kamanavalli, Y. Shouche, World Journal of Microbiology and Biotechnology 27 (2011) 25, http://dx.doi.org/10.1007/s11274-010-0422-7.
  27. F. Wang, Y. Hu, C. Guo, W. Huang, C.Z. Liu, Bioresource Technology 110 (2012) 120, http://dx.doi.org/10.1016/j.biortech.2012.01.184.
  28. Z. Leilei, H. Mingxin, Z. Suiyi, Chemical and Biochemical Engineering Quarterly 26 (2012) 137.
  29. P.Y. Aneez Ahamad, A.A. Mohammad Kunhi, Biodegradation 22 (2011) 253, http://dx.doi.org/10.1007/s10532-010-9392.
  30. A. Banerjee, A.K. Ghoshal, International Biodeterioration and Biodegradation 65 (2011) 1052. https://doi.org/10.1016/j.ibiod.2011.04.011
  31. Y.M. Chen, T.F. Lin, C. Huangb, J.C. Lin, F.M. Hsieh, Journal of Hazardous Materials 148 (2007) 660. https://doi.org/10.1016/j.jhazmat.2007.03.030
  32. S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi, Journal of Hazardous Materials 162 (2009) 482, http://dx.doi.org/10.1016/j.jhazmat.2008.05.070.
  33. G. Annadurai, L.Y. Ling, J.F. Lee, African Journal of Biotechnology 6 (2007) 296.
  34. R.Y. Sheeja, T. Murugesan, Journal of Hazardous Materials 89 (2002) 287, http://dx.doi.org/10.1016/S0304-3894(01)00319-3.
  35. P. Kumaran, Y.L. Paruchuri, Water Research 31 (1997) 11, http://dx.doi.org/10.1016/S0043-1354(99)80001-3.
  36. R. Scribon, Biotechnology, 5th ed., Tech et Doc, Paris, France, 1999.
  37. R.D. Yang, A.E. Humphyrey, Biotechnology and Bioengineering 17 (1975) 1211. https://doi.org/10.1002/bit.260170809
  38. I. Banerjee, M. Jayant, Modak, K. Bandopadhyay, D. Das, B.R. Maiti, Journal of Biotechnology 87 (2001) 211, http://dx.doi.org/10.1016/S0168-1656(01)00235-8.
  39. M. Rigo, R.M. Alegre, J.R. Mazile, V. Bezerra, N. Coelho, R.G. Bastos, Brazilian Archives of Biology and Technology 53 (2010) 481. https://doi.org/10.1590/S1516-89132010000200029
  40. A.A.M.G. Monteiro, R.A.R. Boaventura, A.E. Rodrigues, Biochemical Engineering Journal 6 (2000) 45. https://doi.org/10.1016/S1369-703X(00)00072-3
  41. S.E. Agarry, B.O. Solomon, T.O.K. Audu, International Journal for Biotechnology and Molecular Biology Research 1 (2010) 22.
  42. S.E. Agarry, B.O. Solomon, S.K. Layokun, African Journal of Biotechnology 7 (2008) 2417.
  43. V. Vijayagopal, T. Viruthagiri, Indian Journal of Biotechnology 4 (2005) 565.
  44. M. Rigo, R.M. Alegre, Folia Microbiologica 49 (2004) 41. https://doi.org/10.1007/BF02931644
  45. S.A. Sunil, M.-Y. Chen, D.-J. Lee, N.-Q. Ren, Biotechnology and Bioengineering 96 (2007) 844. https://doi.org/10.1002/bit.21148
  46. S. Dey, S. Mukherjee, International Journal of Water Resources and Environmental Engineering 2 (2010) 40.
  47. B. Marrot, A. Barrios-Martinez, P. Moulin, N. Roche, International Journal of Chemical Reactor Engineering 6 (2008) 174.
  48. H. Ucun, E. Yildiz, A. Nuhoglu, Bioresource Technology 101 (2010) 2965, http://dx.doi.org/10.1016/j.biortech.2009.12.005.
  49. D. Abd-Ehaleem, U. Beshay, A.O. Abdelhamid, H. Moawad, S. Zaki, African Journal of Biotechnology 2 (2003) 8.

Cited by

  1. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 vol.46, pp.3, 2013, https://doi.org/10.1590/s1517-838246320130557
  2. Biodegradation of Phenol from Wastewater by Microorganism Immobilized in Bentonite and Carboxymethyl Cellulose Gel vol.203, pp.7, 2013, https://doi.org/10.1080/00986445.2015.1074897
  3. Application of factorial experimental design methodology for the removal of phenol from water by innovate hybrid bioprocess vol.57, pp.13, 2013, https://doi.org/10.1080/19443994.2015.1004112
  4. Biodegradation and Kinetic Study of 4-Chlorophenol in Bioreactor Packed with Stabilized Bacteria Entrapped in Calcium Alginate Beads System vol.5, pp.2, 2018, https://doi.org/10.1007/s40710-018-0294-7
  5. Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge vol.23, pp.2, 2013, https://doi.org/10.1080/10889868.2019.1602106
  6. Biological Natural Attenuation and Contaminant Oxidation in Sediment Caps: Recent Advances and Future Opportunities vol.6, pp.3, 2013, https://doi.org/10.1007/s40726-020-00153-5
  7. Synchronous degradation of phenol and aniline by Rhodococcus sp.strain PB-1entrapped in sodium alginate-bamboo charcoal-chitosan beads vol.42, pp.28, 2013, https://doi.org/10.1080/09593330.2020.1760357