DOI QR코드

DOI QR Code

Effect of Silicon Source and Application Method on Growth and Development, and Incidence of Powdery Mildew (Sphaerotheca pannosa var. rosae) in Potted Rosa hybrida 'Apollo' and 'Remata'

규산염 종류와 적용방법에 따른 분화장미 'Apollo'와 'Remata'의 생육과 흰가루병 발생억제 효과

  • Park, Yoo Gyeong (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Sivanesan, Iyyakkannu (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 박유경 (경상대학교 대학원 응용생명과학부) ;
  • ;
  • 정병룡 (경상대학교 대학원 응용생명과학부)
  • Published : 2013.06.30

Abstract

Silicon (Si) is still deemed to be a non-essential nutrient for the majority of plant species, although its uptake has been found to be beneficial for improving the resistance to insects, pathogens, drought and heavymetals, and for crop quality and yield. The effect of silicon from different sources ($K_2SiO_3$ and $Na_2SiO_3$) and their application methods (foliar application, subirrigation, and foliar application + subirrigation) on the growth and development, and incidence of powdery mildew of potted Rosa hybrida 'Apollo'(resistant) and 'Remata'(sensitive) was assessed. Plant materials, grown in a commercial rose farm in pots containing a commercial growing medium, consisted of rooted terminal cuttings of Rosa hybrida L. after first pinching. Silicon was mixed in a nutrient solution, at 0, 50, or $100mg{\cdot}L^{-1}$ Si as $K_2SiO_3$ or $Na_2SiO_3$, with EC of 1.6-1.8 $mS{\cdot}cm^{-1}$ and pH of 5.8, and was supplied through a subirrigation system or applied by a foliar application. Natural infestation of Sphaerotheca fuliginea on the plants grown in an environment controlled glasshouse was investigated. Both subirrigational supply and foliar application of Si decreased the plant height. Incidence of powdery mildew in Rosa hybrida 'Remata' by infection of Sphaerotheca fuliginea significantly decreased by $100mg{\cdot}L^{-1}$ $K_2SiO_3$ applied as foliar sprays as compared to that in the control ($0mg{\cdot}L^{-1}$ $K_2SiO_3$). Overall the silicon-treated plant had more tolerance to powdery mildew than the control plant, and $K_2SiO_3$ applied as foliar sprays was the most effective.

규소는 식물의 필수원소에는 포함되지 않지만 곤충, 병원균, 건조, 중금속에 대한 저항성을 향상시켜 작물의 품질과 수량을 증가시킨다. 본 연구는 저면관수, 엽면살포, 저면관수 + 엽면살포법으로 두 가지 규산염($K_2SiO_3$, $Na_2SiO_3$) 처리가 분화장미 저항성인 'Apollo'와 민감성인 'Remata'의 생장과 흰가루병 발생에 미치는 영향을 조사하였다. 식물 재료는 장미 농가에서 재배한 것으로 1차 적심이 완료된 분화 장미를 사용하였다. 정식 후 두 가지 규산염($K_2SiO_3$, $Na_2SiO_3$)을 0, 50, $100mg{\cdot}L^{-1}$ Si의 농도로 엽면살포 또는 저면관수로 처리하였다. 재배 중의 EC는 $1.6-1.8mS{\cdot}cm^{-1}$로, pH는 5.8의 범위를 유지하도록 공급양액과 공급량을 조절하였다. 환경제어가 가능한 온실에서 식물을 재배하였고 흰가루병의 감염은 자연발생적으로 이루어졌다. 엽면살포와 저면관수로 규소를 공급시 식물의 초장이 감소하였다. 'Remata' 품종에서 $K_2SiO_3$ $100mg{\cdot}L^{-1}$를 엽면살포로 공급한 처리에서 대조구($K_2SiO_3$ $0mg{\cdot}L^{-1}$)에 비해 흰가루병의 발생이 감소하였다. 전반적으로 규소를 처리한 것에서 대조구에 비해 흰가루병에 대한 내성이 향상되었다. 이러한 결과로 엽면살포법으로 $K_2SiO_3$를 공급하면 흰가루병에 대한 저항성을 가장 효과적으로 향상시킬 수 있을 것이라 판단된다.

Keywords

References

  1. Bae MJ, Park YG, Jeong BR (2010) Effect of a silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Res J 18:50-56
  2. Choi YH, Kwon JK, Lee JH, Kang NJ, Cho MW, Kang JS (2004) Effect of night and daytime temperatures on growth and yield of paprika 'Fiesta' and 'Jubilee'. J Bio-Environ Cont 13:226-232.
  3. Datnoff LE, Kenneth KW, Correa-V FJ (2001) Silicon in agriculture. Elsevier Science, Amsterdam
  4. Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  5. Guevel MH, Menzies JG, Belanger RR (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119:429-436 https://doi.org/10.1007/s10658-007-9181-1
  6. Kanto T, Miyoshi A, Maekawa TOK, Aino M (2006) Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. J Gen Plant Pathol 72:137-142 https://doi.org/10.1007/s10327-005-0270-8
  7. Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: J. Barber (ed.). Primary processes of photosynthesis. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, pp 203-268
  8. Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Expt Bot 64:286-394 https://doi.org/10.1016/j.envexpbot.2008.06.005
  9. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11-18 https://doi.org/10.1080/00380768.2004.10408447
  10. Matoh T, Kairusmee P, Takahashi E (1986) Salt induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295.304 https://doi.org/10.1080/00380768.1986.10557506
  11. Menzies J, Bowen P, Ehret D (1992) Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon and zucchini squash. J Amer Soc Hort Sci 117:902.905
  12. Miyake Y, Takahashi E (1978) Silicon deficiency of tomato plant. Soil Sci Plant Nutr 24:175-189 https://doi.org/10.1080/00380768.1978.10433094
  13. Miyake Y, Takahashi E (1983) Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci Plant Nutr 29:71-82 https://doi.org/10.1080/00380768.1983.10432407
  14. Moon HH, Bae MJ, Jeong BR (2008) Effect of silicate supplemented to medium on rooting of cutting and growth of chrysanthemum. Flower Res J 16:93-169
  15. Pasini C, Aquila FD, Curir P, Gullino ML (1997) Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protection 16:251-256 https://doi.org/10.1016/S0261-2194(96)00095-6
  16. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to waterdeficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106-115 https://doi.org/10.1007/s00344-009-9120-9
  17. Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991) Mobility and deposition of silicon in cucumber plant. Plant Cell and Environ 14:485-492 https://doi.org/10.1111/j.1365-3040.1991.tb01518.x
  18. Sivanesan I, Song JY, Hwang SJ, Jeong BR (2011) Micropropagation of Cotoneaster wilsonii Nakai - A rare endemic ornamental plant. Plant Cell Tiss Organ Cult 105:55-63 https://doi.org/10.1007/s11240-010-9841-2
  19. Sivanesan I, Son MS, Lee JP, Jeong BR (2010) Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and 'Yellow Boy' seedlings cultured in an environment controlled chamber. Propagation Ornamental Plants 10:136-140
  20. Son MS, Oh HJ, Song JY, Lim MY, Sivanesan I, Jeong BR (2012) Effect of silicon source and application method on growth of kalanchoe 'Peperu'. Kor J Hort Sci Technol 30:250-255
  21. Zuccarini P (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plant 52:157-160 https://doi.org/10.1007/s10535-008-0034-3