DOI QR코드

DOI QR Code

Changes in Chlorophyll Contents and Net Photosynthesis Rate of 3-year-old Quercus variabilis Seedlings by Experimental Warming

실외 실험적 온난화가 3년생 굴참나무 묘목의 엽록소 함량 및 순광합성률 변화에 미치는 영향

  • Lee, Sun Jeoung (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yoon, Tae Kyung (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Jo, Wooyong (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Jung, Yejee (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 이선정 (고려대학교 대학원 환경생태공학과) ;
  • 한새롬 (고려대학교 대학원 환경생태공학과) ;
  • 윤태경 (고려대학교 대학원 환경생태공학과) ;
  • 조우용 (고려대학교 대학원 환경생태공학과) ;
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 정예지 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Published : 2013.03.31

Abstract

Global warming affects terrestrial ecosystem productivity including photosynthesis and plant growth. This study was conducted to investigate the effect of experimental warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis Blume seedlings. One-year-old Q. variabilis seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ compared to control plots using the infrared lamp from November 2010. Total chlorophyll contents were higher in warmed plots than those in control plots in May, July, August, September and October, 2012, however, the differences were statistically significant only in October. Net photosynthetic rates were also higher in warmed plots than those in control plots in May (57.0%), September (21.4%), and October (89.6%), however, the differences were significant only in May and October. Higher chlorophyll contents and net photosynthetic rate of warmed plots in spring and fall might be related to the extended growing season length.

전 지구적 온난화는 광합성과 생장을 포함한 육상생태계의 생산성에 영향을 미칠 것으로 예상되고 있다. 실외 실험적 온난화가 굴참나무(Quercus variabilis Blume) 3년생 묘목의 엽록소 함량 및 순광합성률에 미치는 영향을 알아보고자 1년생 묘목을 2010년 4월에 식재하고 2010년 11월부터 적외선등을 이용하여 온난화 처리구의 기온을 대조구보다 $3^{\circ}C$ 증가시켰다. 2012년 5월부터 10월까지 굴참나무 묘목의 총 엽록소 함량과 순광합성률을 측정한 결과 총 엽록소 함량은 5월, 7월, 8월, 9월, 10월에 온난화 처리구에서 대조구보다 높았으나, 이들 간의 차이는 10월에만 통계적으로 유의하였다. 또한 순광합성률은 5월, 9월, 10월에 온난화 처리구에서 대조구보다 각각 57.0%, 21.4%, 89.6% 높았으나, 5월과 10월에 이들 간의 차이가 통계적으로 유의하게 나타났다. 온난화 처리에 따른 굴참나무 묘목의 봄과 가을철 엽록소 함량 및 순광합성률 증가 경향은 생장을 일찍 시작하고 늦게까지 지속함으로써 생장기간이 늘어나는 것과 관련이 있을 것으로 추정된다.

Keywords

References

  1. 변재균, 이우균, 노대균, 김성호, 최정기, 이영진. 2010. 중부지방 소나무와 참나무류의 반경생장량과 지형, 기후 인자의 관계. 한국임학회지 99(6): 908-913.
  2. 산림청. 2009. 기후변화와 산림. 산림청. 대전. pp. 123.
  3. 신형진, 박근애, 박민지, 김성준. 2012. 기후변화 시나리오 MIROC3.2 A1B에 따른 우리나라 산림식생분포의 변화 전망. 한국지리정보학회지 15(1): 64-75.
  4. 이수원, 김재원, 김원극, 조민석. 2009. 주요 조림수종의 양묘기술. 국립산림과학원. 서울. pp. 89.
  5. 정중규, 김해란, 유영한. 2010. 지구온난화에 따른 상수리나무와 굴참나무의 생육반응에 관한 연구. 한국환경생태학회지 24(6): 648-656.
  6. 조우용 외 9명. 2011. 실외 인위적 온난화 처리가 굴참나무 묘목의 엽록소 함량 및 순광합성률에 미치는 영향. 한국임학회지 100(4): 733-737.
  7. 최정호와 정진철. 2002. 생육시기에 따른 무궁화 및 품종의 엽록소 함량 변화. 원광대학교 생명자원과학연구소 생명자원과학연구 24: 28-34.
  8. 한심희, 김두현, 김길남, 이재천. 2011. 온도와 $CO_2$ 농도 증가에 따른 다릅나무와 백당나무의 생장, 광합성 및 광색소 함량 변화. 한국농림기상학회지 13(3): 115-122.
  9. 한심희, 김두현, 김길남, 이재천, 윤충원. 2012. 온도 증가에 따른 일본잎갈나무와 거제수나무 유묘의 초기 생장과 생리 특성 변화. 한국농림기상학회지 14(2): 63-70.
  10. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S. and Davison, A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  11. Bassow, S.L. and Bazzaz, F.A. 1998. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species. Ecology 79(8): 2660-2675. https://doi.org/10.1890/0012-9658(1998)079[2660:HECACL]2.0.CO;2
  12. Fracheboud, Y., Luquez, V., Bjorken, L., Sjodin, A., Tuominen, H. and Jansson, S. 2009. The control of autumn senescence in European aspen. Plant Physiology 149(4): 1982-1991. https://doi.org/10.1104/pp.108.133249
  13. Gunderson, C.A., O'Hara, K.H., Campion, C.M., Walker, A.V. and Edwards, N.T. 2010. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology 16(8): 2272-2286.
  14. Han, C., Liu, A. and Yang, Y. 2009. Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regulation 58(2): 153-162. https://doi.org/10.1007/s10725-009-9363-2
  15. He, W.M. and Dong, M. 2003. Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us Sandland. Photosynthetica 41(2): 297-300. https://doi.org/10.1023/B:PHOT.0000011966.30235.91
  16. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J. and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320.
  17. Kirschbaum, M.U.F. 2004. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology 5(3): 242-253.
  18. Lee, D.S. and Woo, S.Y. 2000. Effects of light environment on growth and chlorophyll contents of Pinus strobus seedlings. Korean Journal of Agricultural and Forest Meteorology 2(4): 198-203.
  19. Lin, D., Xia, J. and Wan, S. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist 188(1): 187-198. https://doi.org/10.1111/j.1469-8137.2010.03347.x
  20. Lin, Y., Medlyn, B.E. and Ellsworth, D.S. 2012. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiology 32(2): 219-231. https://doi.org/10.1093/treephys/tpr141
  21. Llorens, L., Peñuelas, J., Beier, C., Emmett, B., Estiarte, M. and Tietema, A. 2004. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north- south European gradient. Ecosystems 7(6): 613-624.
  22. Niu, Z., Li, Z., Xia, J., Han, Y., Wu, M. and Wan, S. 2008. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany 63(1-3): 91-101. https://doi.org/10.1016/j.envexpbot.2007.10.016
  23. Norby, R.J., Long, T.M., Hartz-Rubin, J.S. and O'Neil, E.G. 2000. Nitrogen resorption in senescing tree leaves in a warmer, $CO_2$-enriched atmosphere. Plant and Soil 224(1): 15-29. https://doi.org/10.1023/A:1004629231766
  24. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J. and GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4): 543-562. https://doi.org/10.1007/s004420000544
  25. SAS Institute Inc.. 2009. SAS/STAT${(R)}$ 9.2 User's Guide. SAS Institute Inc.. Cary.
  26. Saxe, H., Cannell, M.G.R., Johnsen, O., Ryan, M.G. and Vourlitis, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149(3): 369-399.
  27. Sherry, R.A., Zhou, X., Gu, S., Arnone III, J.A., Schimel, D.S., Verburg, P.S. Wallace, L.L. and Luo, Y. 2007. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences 104(1): 198-202. https://doi.org/10.1073/pnas.0605642104
  28. Suzuki, S. and Kudo, G. 1997. Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Global Change Biology 3(S1): 108-115. https://doi.org/10.1111/j.1365-2486.1997.gcb146.x
  29. Way, D.A. and Oren, R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30(6): 669-688. https://doi.org/10.1093/treephys/tpq015
  30. Xu, Z.F., Hu, T.X., Wang, K.Y., Zhang, Y.B. and Xian, J.R. 2009. Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China. Plant Species Biology 24(1): 27-34. https://doi.org/10.1111/j.1442-1984.2009.00229.x
  31. Xu, Z.F., Hu, T.X. and Zhang, Y.B. 2012. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research 131(3): 811-819. https://doi.org/10.1007/s10342-011-0554-9
  32. Yin, H.J., Liu, Q. and Lai, T. 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23(2): 459-469. https://doi.org/10.1007/s11284-007-0404-x
  33. Zhao, C. and Liu, Q. 2009. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39(1): 1-11. https://doi.org/10.1139/X08-152
  34. Zhou, X., Liu, X., Wallace, L.L. and Luo, Y. 2007. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. Journal of Integrative Plant Biology 49(3): 270-281. https://doi.org/10.1111/j.1744-7909.2007.00374.x

Cited by

  1. Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp vol.102, pp.4, 2013, https://doi.org/10.14578/jkfs.2013.102.4.522
  2. Open-field Experimental Warming and Precipitation Manipulation System Design to Simulate Climate Change Impact vol.103, pp.2, 2014, https://doi.org/10.14578/jkfs.2014.103.2.159
  3. Short-term effects of warming treatment and precipitation manipulation on the ecophysiological responses of Pinus densiflora seedlings vol.40, pp.13036173, 2016, https://doi.org/10.3906/tar-1511-68
  4. Short-term physiological responses of Larix kaempferi seedlings to spring warming and drought manipulation vol.17, pp.4, 2013, https://doi.org/10.1080/21580103.2021.1997830