DOI QR코드

DOI QR Code

Inhibitory Effects of Sasa borealis on Mechanisms of Adipogenesis

조릿대 에틸아세테이트 분획물의 지방세포에서 분화전사인자 조절을 통한 지방형성 저해 효능

  • Park, Hee Sook (Plant Resources Research Institute, Duksung Women's University) ;
  • Kim, Gun-Hee (Plant Resources Research Institute, Duksung Women's University)
  • 박희숙 (덕성여자대학교 식물자원연구소) ;
  • 김건희 (덕성여자대학교 식물자원연구소)
  • Received : 2013.02.04
  • Accepted : 2013.03.15
  • Published : 2013.06.30

Abstract

Sasa borealis is a major source of bamboo leaves used for traditional medicine in Korea. Obesity is a serious health problem in industrialized countries that has been implicated in various diseases, including type 2 diabetes, hypertension, cancer, and coronary heart disease. Recent reports have proposed mechanisms to reduce obesity by decreasing preadipocyte differentiation, and proliferation in 3T3-L1 preadipocyte. The preadipocytes play a key role by differentiation into mature adipocytes and increasing fat mass. In this study, we investigated whether ethanol-soluble extracts and ethyl acetate-soluble fractions from Sasa borealis inhibits intracellular accumulation of lipid droplets in a dose-dependent manner in 3T3-L1 cells (an important model system for studying adipogenesis). The down-regulation of PPAR${\gamma}$ and C/EBP${\alpha}$ (key adipogenic transcription factors) were confirmed by the reverse transcription polymerase chain reaction (RT-PCR). Ethyl acetate-soluble fractions from Sasa borealis attenuated the expression of PPAR${\gamma}$ and C/EBP${\alpha}$. These results suggest that Sasa borealis inhibits adipogenic differentiation by regulating adipogenic transcription factors in 3T3-L1 cells. Therefore, Sasa borealis extracts may be a good candidate for the management of obesity.

본 연구에서는 3T3-L1 지방전구세포를 이용하여 조릿대조추출물(SBE)과 에틸아세테이트 분획물(SBEA)의 지방세포 내 중성지방 축적 저해 활성을 확인하고자 하였다. 먼저 SBE의한 지방세포 분화 저해 활성을 확인하기 위해 추출물을 3T3-L1 지방전구세포에 분화를 유도하면서 농도별(10, 50, 100 ${\mu}g/mL$)로 처리하였고, 그 결과 SBE가 지방세포의 분화를 억제시켜 지방세포 내 중성지방 축적을 저해시켰다. 또한 SBE를 용매 극성에 따른 분획한 분획물들의 항분화 효능을 확인하였다. 그중 항분화 효능이 가장 뛰어난 에틸아세테이트 분획물로 지방세포 분화에 따른 세포 내 중성지방축적이 억제 되었다. 그러나, 지방세포 분해를 통한 glycerol release의 증가는 나타나지 않았다. 이 같은 결과를 바탕으로 항분화 효능의 기전을 연구하기 위해 PPAR${\gamma}$, C/EBP${\alpha}$ 등 전사활성과 지방세포 분화에 관여하는 유전자들의 활성을 확인해 보았다. 실험 결과 SBEA는 PPAR${\gamma}$와 C/EBP${\alpha}$의 mRNA 발현을 농도 의존적으로 감소시켰다. 따라서 SBEA 항비만 효과는 지방 생성의 주요 전사인자인 PPAR${\gamma}$와 C/EBP${\alpha}$의 유전자 발현조절을 통해 지방 분화 억제 및 지방 축적을 효과적으로 감소시키는 것으로 보이며, 효과가 있는 농도가 100 ${\mu}g/mL$로 천연물질로써 비교적 낮은 농도에서 우수한 지방 분화억제 활성을 나타내어 경제적이며 효과적인 항비만 기능성식품으로서 개발 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Visscher TL, Seidell JC. 2001. The public health impact of obesity. Annu Rev Public Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  2. Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  3. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Gene Dev 14:1293-1307.
  4. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643.
  5. Otto TC, Lane MD. 2005. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40: 229-242. https://doi.org/10.1080/10409230591008189
  6. Choi BH, Ahn IS, Kim YH, Park JW, Lee SY, Hyun CK, Do MS. 2006. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med 38: 599-605. https://doi.org/10.1038/emm.2006.71
  7. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116S-3121S.
  8. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  9. Yoon KD, Kim CY, Huh H. 2000. The flavone glycosides of Sasa borealis. Kor J Pharmacogn 31: 224-227.
  10. Jeong YH, Chung SY, Han AR, Sung MK, Jang DS, Lee J, Kwon YJ, Lee HJ, Seo EK. 2007. P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa borealis. Chem Biodivers 4:12-16. https://doi.org/10.1002/cbdv.200790001
  11. Park HS, Lim JH, Kim HJ, Choi HJ, Lee IS. 2007. Antioxidant flavone glycosides from the leaves of Sasa borealis. Arch Pharm Res 30: 161-166. https://doi.org/10.1007/BF02977689
  12. Hwang JY, Han JS. 2007. Inhibitory effects of Sasa borealis leaves extracts on carbohydrate digestive enzymes and postprandial hyperglycemia. J Korean Soc Food Sci Nutr 36: 989-994. https://doi.org/10.3746/jkfn.2007.36.8.989
  13. Ko BS, Jun DW, Jang JS, Kim JH, Park S. 2006. Effect of Sasa borealis and white lotus roots and leaves on insulin action and secretion in vitro. Korean J Food Sci Technol 38: 114-120.
  14. Im MS. 1984. Studies on pharmacological actions on Sasa borealis Makino. MS Thesis. Sookmyung Women's University, Seoul, Korea. p 1-2.
  15. Jeong EY. 2006. Effect of the Sasa borealis leaves extract on metabolic syndrome in C57BL/6J mice fed a high fat diet. MS Thesis. Chonnam National University, Gwangju, Korea. p 14-40.
  16. Kim EY. 2007. Effect of the Sasa borealis leaves extract on cytokine levels in C57/BL6J mice. MS Thesis. Chonnam National University, Gwangju, Korea. p 20-48.
  17. Lee J, Yoon HG, Lee YH, Park J, You Y, Kim K, Jang JY, Yang JW, Jun W. 2010. The potential effects of ethyl acetate fraction from Curcuma longa L. on lipolysis in differentiated 3T3-L1 adipocytes. J Med Food 13: 364-370. https://doi.org/10.1089/jmf.2009.1276
  18. Jeong HJ, Yoon SJ, Pyun YR. 2008. Polysaccharides from edile mushroom Hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocyte reducing mRNA expression of PPAR${\gamma}$, C/EPB${\alpha}$, and leptin. Food Sci Biotechnol 17: 267-273.
  19. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake- stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247.
  20. Kubota H, Morii R, Kojima-Yuasa A, Huang X, Yano Y, Matsui-Yuasa I. 2009. Effect of Zizyphus jujuba extract on the inhibition of adipogenesis in 3T3-L1 preadipocytes. Am J Chin Med 37: 597-608. https://doi.org/10.1142/S0192415X09007089
  21. Nakano R, Kurosaki E, Yoshida S, Yokono M, Shimaya A, Maruyama T, Shibasaki M. 2006. Antagonism of peroxisome proliferator-activated receptor ${\gamma}$ prevents high-fat diet-induced obesity in vivo. Biochem Pharmacol 72: 42-52. https://doi.org/10.1016/j.bcp.2006.03.023
  22. Freytag SO, Paielli DL, Gilbert JD. 1994. Ectopic expression of the CCAAT/enhancer-binding protein ${\alpha}$ promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8: 1654-1663. https://doi.org/10.1101/gad.8.14.1654
  23. Saito T, Abe D, Sekiya K. 2007. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun 357: 371-376. https://doi.org/10.1016/j.bbrc.2007.03.169
  24. Hong EY, Jang MR, Kim MK, Kim GH. 2009. Antioxidant and antimicrobial activities of Sasa borealis Makino extracts. J Nat Sci 15: 233-242.
  25. Park YO, Lim HS. 2009. Antioxidant activities of bamboo (Sasa borealis) leaf extract according to extraction solvent. J Korean Soc Food Sci Nutr 38: 1640-1648. https://doi.org/10.3746/jkfn.2009.38.12.1640
  26. Choi YM, Lee SM, Kim YH, Jeon GU, Sung JH, Jeong HS, Lee JS. 2010. Defatted grape seed extracts suppress adipogenesis in 3T3-L1 preadipocytes. J Korean Soc Food Sci Nutr 39: 927-931. https://doi.org/10.3746/jkfn.2010.39.6.927

Cited by

  1. Antioxidant and anti-adipogenic activities of the nuts of Castanopsis cuspidata var. thunbergii 2017, https://doi.org/10.1007/s10068-017-0183-2
  2. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.227
  3. Antidiabetic Potential of Medicinal Plants and Their Active Components vol.9, pp.10, 2013, https://doi.org/10.3390/biom9100551