DOI QR코드

DOI QR Code

CFD Based Shape Design of Guide Vane for Fan Filter Unit

전산유체해석을 이용한 Fan Filter Unit(FFU)의 가이드 베인 형상설계

  • Jang, Jun Hwan (Graduate School of Mechanical Engineering, Kookmin Univ.) ;
  • Ahn, Joon (School of Mechanical Systems Engineering, Kookmin Univ.) ;
  • Myong, Hyon Kook (School of Mechanical Systems Engineering, Kookmin Univ.)
  • 장준환 (국민대학교 대학원 기계공학과) ;
  • 안준 (국민대학교 기계시스템공학부) ;
  • 명현국 (국민대학교 기계시스템공학부)
  • Received : 2013.04.09
  • Accepted : 2013.05.16
  • Published : 2013.07.01

Abstract

A fan filter unit (FFU) is a device which supplies clean air from the ceiling in a clean room. With an increase in its size, velocity variation occurs within the exhaust plane and this damage the product quality or productivity. Hence, a guide vane is installed inside the device to enhance the velocity uniformity. Because the vane reduces the flow rate for a given pumping power, an optimum design is required to achieve velocity uniformity while minimizing the flow rate reduction at the same time. To find a geometry that satisfies these requirements, a series of numerical simulations has been conducted while changing the angle and length of the guide vanes. By changing the geometry of the side guide vane, the velocity uniformity increased by 3.7% and the flow rate decreased by 1.5%. For the center guide vane, the velocity uniformity increased by 2.9% and the flow rate decreased by 0.7%.

팬 필터 유닛 (FFU)은 청정실 천정에 설치되어 정화된 공기를 공급하는 장치이다. FFU가 대형화되면서 출구면에서 속도가 불균일해지고 결과적으로 청정실에서 생산되는 제품의 품질 또는 생산성을 떨어뜨리게 된다. 이러한 문제를 해결하기 위해 가이드 베인이 설치되는데 가이드 베인은 속도를 균일하게 하지만 유동저항을 유발하여 동력이 일정하게 주어진 경우 공급되는 유량을 감소시킨다. 따라서 속도 균일성을 확보하면서 유량 감소를 최소화하는 최적설계가 요구된다. 본 연구에서는 FFU의 외벽과 중앙에 설치된 가이드 베인의 각도와 길이를 변경하면서 수치해석을 수행하여 가이드 베인의 성능 개선 방안을 도출하였다. 외벽에 설치된 가이드 베인의 경우, 형상을 변경하여 유량이 1.5% 감소하는 조건에서 속도 균일도를 3.7% 향상시킬 수 있었다. 중앙 가이드 베인의 경우 유량이 0.7% 감소하는 조건에서 속도 균일도를 2.9% 향상시킬 수 있었다.

Keywords

References

  1. Noh, K.-C., Oh, M.-D. and Lee, S.-C., 2004, "A Study on the 3-D Airflow and Dynamic Cross Contamination in the Photolithography Process Clean Room," Trans. Korean Soc. Mech. Eng. B, Vol. 28, No. 5, pp. 560-568. https://doi.org/10.3795/KSME-B.2004.28.5.560
  2. Xu, T., Lan, C.-H. and Jeng, M.-S., 2007, "Performance of Large Fan-filter Units for Cleanroom Applications," Building & Environment, Vol. 42, pp. 2299-2304. https://doi.org/10.1016/j.buildenv.2006.05.007
  3. Chen, J.-J., Lan, C.-H., Jeng, M.-S. and Xu, T., 2007, "The Development of Fan Filter Unit with Flow Rate Feedback Control in a Cleanroom," Building & Environment, Vol. 42, pp. 3556-3561. https://doi.org/10.1016/j.buildenv.2006.10.026
  4. Hu, S.C., Wu, Y.Y. and Liu, C.J., 1996, "Airflow Characteristics in Cleanrooms," Building & Environment, Vol. 31, No.2, pp. 119-128. https://doi.org/10.1016/0360-1323(95)00039-9
  5. Noh, K.-C., Lee, H.-C., Kim, D.-Y. and Oh, M.-D., 2007, "Method of Particle Contamination Control for Yield Enhancement in the Cleanroom" Trans. Korean Soc. Mech. Eng. B, Vol. 31, No. 6, pp. 522-530. https://doi.org/10.3795/KSME-B.2007.31.6.522
  6. Hu, S.C. and Chuah, Y.K., 2003, "Deterministic Simulation and Assessment of Air-recirculation Performance of Unidirectional-flow Cleanrooms that Incorporate Age of Air Concept," Building & Environment, Vol. 38, No.4, pp. 564-570.
  7. Lee, S., Ahn, J. and Shin, S., 2009, "Numerical Optimization of Temperature Distribution in HRSG System Using Inlet Guide Vane," Trans. of the KSCFE, Vol. 14, No. 3, pp. 1-8.
  8. Nam, S.-H., Kim, Y.-T., Choi, Y.-D. and Lee, Y.-H., 2008, "Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD," Trans. of the KFMA, Vol. 11, No. 5, pp. 44-49. https://doi.org/10.5293/KFMA.2008.11.5.044
  9. Yu, H.-R, Jung, Y.-R and Park, W.-G., 2004, "Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane," Trans. of the KSCFE, Vol. 9, No. 2, pp. 62-68.