DOI QR코드

DOI QR Code

The Biological Activity from Prunella vulgaris Extracts

하고초(Prunella vulgaris) 추출물의 생리활성

  • Kim, Jin-Sung (School of Food science, Kyungpook National University) ;
  • Lee, Ju-Yeong (School of Applied Bioscience, Kyungpook National University) ;
  • Park, Ki-Tae (School of Culinary Art and Baking Technology, Dongju College University) ;
  • An, Bong-Jeun (Department of Cosmeceutical, Daegu Hanny University) ;
  • Lee, Sun-Ho (The Institute of Marine Biotechnology, Andong National University) ;
  • Cho, Young-Je (School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University)
  • 김진성 (경북대학교 식품과학부) ;
  • 이주영 (경북대학교 응용생명과학부) ;
  • 박기태 (동주대학교 외식조리제과계열) ;
  • 안봉전 (대구한의대학교 화장품약리학과) ;
  • 이선호 (안동대학교 해양연구소) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소)
  • Received : 2013.07.24
  • Accepted : 2013.03.15
  • Published : 2013.04.30

Abstract

The phenolic compounds of water extracts from Prunella vulgaris were highest at 9.25 mg/g, respectively, when various extraction solvents were used. The optimum condition for extracting phenolic compounds from Prunella vulgaris was extraction in water for 18hr. The DPPH-scavenging activities of Prunella vulgaris were highest at the water extracts. The ABTS radical cation decolorization was higher than 40% in the range of 0~100% ethanol extract section. The antioxidant protection factor on the lipophilic phenolic metabolites was shown to be 1.1 PF in the water extracts from Prunella vulgaris. The TBARS was lower than the control ($0.53{\mu}M$) in all the sections. The tyrosinase inhibitory effect, which is related to skin whitening, was above 40%, and for the anti-wrinkle effect, the elastase inhibition activity was above 40% at 0.2 mg/mL. The astringent effect of the Prunella vulgaris 40% ethanol extracts was 98.1% at 1 mg/mL. As a result, it can be concluded that Prunella vulgaris has the potential to be used as a cosmetic material.

하고초(Prunella vulgaris)에 함유된 페놀성 물질은 물과 40% ethanol을 용매로 하여 18시간 이상 추출하였을 때 9.25 mg/g, 8.74 mg/g 함량으로 가장 많이 용출되었다. 항산화효과 중 전자공여능을 측정한 결과는 물 추출물과 40% ethanol에서 각각 79%와 75%를 나타내었으며, 농도별 ethanol 추출물에서 모두 50% 이상의 높은 항산화 활성을 나타내었다. ABTS radical cation decolorization을 측정한 결과는 ethanol 추출물의 모든 구간에서 70% 이상의 높은 항산화력을 보였으며, 그 중 40% ethanol 추출물에서 97%의 가장 높은 항산화활성을 나타내었다. 지용성 물질에 대한 항산화력으로 antioxidant protection factor (PF)를 측정한 결과, 물 추출물에서 1.10의 값으로 가장 높은 항산화활성을 나타내었으며, ethanol 추출물 전 구간에서는 0.92 이하의 PF값을 나타내었다. 활성 산소 중 지방산화를 일으키는 hydroxyl radical에 대한 하고초 추출물의 영향은 물 추출물과 ethanol 추출물 전 구간에서 대조구 보다 낮은 TBARs 값을 나타내었다. 하고초 추출물의 주름개선효과의 경우 $200{\mu}g/mL$ phenolics의 농도에서 물 추출물의 경우 39.24%를 ethanol 추출물에서는 43.68%의 가장 높은 저해력을 보였으며, 수렴효과는 ethanol 추출물 $1000{\mu}g/mL$이상의 phenolics 농도에서 대조구인 tannic acid와 비슷한 98.1%의 저해력을 보였다. 미백효과를 확인결과 가장 높은 농도인 $200{\mu}g/mL$ phenolics에서 물 추출물의 경우 35.74%, ethanol 추출물에서 42.67%의 저해력을 나타내어 대조구인 kojic acid의 65.25%보다 낮은 활성을 나타내었다. hyaluronidase의 저해활성의 경우 물 추출물과 ethanol추출물 모두 $150{\mu}g/mL$ 이상의 phenolics 농도에서 대조구인 vitamin C보다 높은 저해력을 보였다. 이러한 결과는 하고초 추출물이 미용식품 또는 기능성 화장품의 소재로 활용이 가능할 것으로 판단되었다.

Keywords

References

  1. Bong SG (2009) A study on the preservation and utilization of Dongeuibogam. J Kor Inst Orient med, 15, 31-42
  2. Choi JS (2009) The medical system of Donguibogam is based on the relationship between body, Disease, symptom-complex and recipe. J Kor Inst Orient med, 15, 125-130
  3. Cho YJ (2011) Characteristics of cosmetic with whitening compounds from Phellodendron amurense. J Appl Biol Chem, 54, 108-113 https://doi.org/10.3839/jabc.2011.019
  4. Cho YJ, An BJ, Kim JH (2011) Application of isolated tyrosinase inhibitory compounds from Persimmon leaves. Kor J Life Sci, 21, 976-984 https://doi.org/10.5352/JLS.2011.21.7.976
  5. Kim YB, Kim HC (2002) The clinical Study on Cosmetics by Using Traditional Herbal Medicine. J Kor Orient Med Ophth & Otol & Derm Soc, 15, 259-275
  6. Kim JS, Kang SS, Lee KS, Chang SY, Won DH (2000) Quantitative determination of ursolic acid from Prunellae herba. Korean J Pharmacogn, 31, 416-420
  7. Kojima H, Ogura H (1986) Triterpenoids from Prunella vulgaris. Phytochemistry, 25, 729-733 https://doi.org/10.1016/0031-9422(86)88033-5
  8. Folin O, Denis W (1912) On phosphotungasticphosphomolybdic compounds as color reagents. J Biol Chem, 12, 239-249
  9. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 26, 1199-1200
  10. Pellegrin N, Roberta R, Min Y, Catherine RE (1998) Screening of diatry carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-Azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol, 299, 379-389
  11. Andarwulan N, Shetty K (1999) Phenolic content in differentiated tissue cultures of untansformed and Ahrobacterium-transformed roots of anise (Pimpinella anisum L.). J Agric Food Chem, 47, 1776-1780 https://doi.org/10.1021/jf981214r
  12. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol, 105, 302-310
  13. Imokawa G, Mishima Y (1981) Isolation and characterization of tyrosinase inhibitors using tyrosinase binding affinity chromatography. Br J Dermatol, 104, 531-539 https://doi.org/10.1111/j.1365-2133.1981.tb08167.x
  14. Lee KT, Lee SY, Jeong JH, Jo BK(1999) New antiwrinkle cosmetics. Coreana cosmetics Co., Ltd. Cheonan, Korea, p. 32
  15. Lee JT, Jeong YS, An BJ (2002) Physiological activity of Salicornia herbacea and its application for cosmetic materials. Kor J Herb, 17, 51-60
  16. Tolksdorf S, McCready M, McCullagh D, Schwenk E (1949) The turbidimetric assay of hyaluronidase. J Lab Clin Med, 34, 74-81
  17. Choi HS, Kim MG, Shin JJ, Pack JM, Lee JS (2003) The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr, 32, 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  18. Aoshima H, Tsumoue H, Koda H, Kiso Y (2004) Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging actibity. J Agric Food Chem, 52, 5240-5244 https://doi.org/10.1021/jf049817s
  19. Koh JH, Hwang MO, Moon JS, Hwang SY, Son JY (2005) Antioxidative and antimicrobial activities of pomegranate seed extracts. Kor J Food Cookery Sci, 21, 171-179
  20. Andarwulan N, Shetty K (1999) Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J Agric Food Chem, 47, 1776-1780 https://doi.org/10.1021/jf981214r
  21. Kim JH (2006) Biological activities of phenolic compound from Herb and oriental medicinal resource. MS Thesis, Sangju National University, Korea
  22. Choi JH, Kim JS, Jo BS, Kim JH, Park HJ, An BJ, Kim MU, Cho YJ (2011) Biological activity in functional cosmetic of purple sweet potato extracts. Kor J Food Preserv, 18, 414-422 https://doi.org/10.11002/kjfp.2011.18.3.414
  23. Kim JY, Maeng YS, Lee KY (1995) Anti-oxidative effects of soybean extracts by using various solvents. Kor J Food Sci Technol, 27, 635-639
  24. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR (2004) Screening of the antioxidant activity of some medicinal plants. Kor J Food Sci Tech, 36, 333-338
  25. Tsuji N, Moriwaki S, suzuki Y, Takema Y, Imokawa G (2001) The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity. Phytochem Photobiol, 74, 283-290 https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  26. Roth GJ, Siok CJ, Ozols J (1980) Structural characteristics of prostaglandin synthetase from sheep vesicular gland. J Biol Chem, 255, 1301-1304
  27. Dewitt DL, Rollins TE, Day JS, Gauger JA, Smith WL (1981) Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum. J Biol Chem, 256, 10375-10382
  28. Kim KB, Jo BS, Lee JY, Park KT, An BJ, Lee SH, Cho YJ (2012) Beauthy food activities of isolated phenolic compounds from Ulmus pumila. J Appl Biol Chem, 54, 207-215 (2012)
  29. Yagi A, Kanbara T, Morinobu N (1986) The effect of tyrosinase inhibition for aloe. Planta Medica, 3981, 517-519
  30. Imokawa G, Mishima Y (1980) Isolation and characterization of tyrosinase inhibitors and their differential action on melanogenic subcelluar compartments in amelanotic and melanomas. Br J Dermatol, 103, 625-633 https://doi.org/10.1111/j.1365-2133.1980.tb01684.x
  31. Laskin JD, Piccinini LA (1986) Tyrosinase isozyme heterogeneity in differentiating B-16/C3 melanoma. J Biol Chem, 261, 16626-16635
  32. Kim MR, Hwang JH, Yun JK, Han KH, Do EJ, Lee JS, Lee EJ, Kim JB (2011) Antioxidation and antiaging effect of mixed extract from Korean medicinal herbs. Kor J Herb, 26, 111-117

Cited by

  1. Hyaluronidase inhibitory activity of extracted phenolic compounds from ultrafine grind Saururus chinensis vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.20
  2. Biological activities of Aster scaber extracts vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.393
  3. Comparison of Physiological Activities of Radish Bud (Raphanus sativus L.) according to Extraction Solvent and Sprouting Period vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.549
  4. Biological activities ofBrassica rapa(Turnip) callus extracts by plant cell culture technology vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.248
  5. Beauty Food Activities of Isolated Phenolic Compounds from Tetragonia tetragonioides vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.333
  6. Antioxidant, angiotensinconverting enzyme and xanthin oxidase inhibitory activity of extracts from Saururus chinensis leaves by ultrafine grinding vol.21, pp.1, 2014, https://doi.org/10.11002/kjfp.2014.21.1.75
  7. Biological activities of extracts fromCaryopteris incanaMiq. vol.60, pp.1, 2017, https://doi.org/10.3839/jabc.2017.011
  8. 마삭줄(Trachelospermum asiaticum var. intermedium nakai)로부터 추출한 pheonolic compounds의 생리활성 vol.24, pp.2, 2013, https://doi.org/10.11002/kjfp.2017.24.2.282
  9. 새싹 밀의 추출용매에 따른 생리활성 평가 vol.32, pp.6, 2013, https://doi.org/10.9799/ksfan.2019.32.6.636