DOI QR코드

DOI QR Code

Development of Three-dimensional Interactive Analysis for Superstructure-piled raft foundation

구조물-말뚝지지 전면기초의 3차원 상호작용 해석기법 개발

  • Received : 2013.01.11
  • Accepted : 2013.05.29
  • Published : 2013.06.30

Abstract

In engineering practices, the superstructure was analyzed under a fixed boundary condition and the foundation was designed by considering the loading condition of superstructure. It may result in overestimation of forces, the bending moment, settlement of superstructure and foundation. In this study, an interactive analytical method is proposed for the interaction between the superstructure and the piled raft. The overall objective of this study is focused on the application of interactive analysis method for predicting behavior of entire structures. And a series of numerical analyses are performed to verify the interactive analysis routine in comparison to the unified analysis method. Through the comparative studies, it is found that the iterative and interactive analysis gave similar results of settlement and raft bending moment compared with those of finite element analysis. And it is also found that the proposed design method considering interaction between superstructure and foundation is capable of predicting reasonably well the behavior of entire structures. It can be effectively used to the design of a superstructure-piled raft foundation system.

기존의 설계에서는 상부구조물의 거동은 하부기초 및 지반을 고정단 조건으로 가정하여 분석하였고, 하부기초의 설계는 상부구조물의 하중조건만 고려하였다. 이는 상부구조물 및 기초의 부재력과 침하량을 과다하게 판단할 가능성이 있다. 본 연구에서는, 상부구조물과 말뚝지지 전면기초의 상호작용을 고려한 상호작용 해석기법을 제안하였으며, 전체 구조물의 거동을 파악하기 위한 상호작용해석기법의 적용성을 고찰하였다. 일련의 수치해석을 통하여 상호작용해석과 일체해석의 결과를 비교한 결과, 본 설계기법으로 산정한 말뚝지지 전면기초의 침하거동 및 휨모멘트가 유한요소해석과 유사하게 나타났다. 또한 상부구조물과 하부기초의 상호작용을 고려하여 전체구조물의 거동을 비교적 정확히 산정하는 것을 알 수 있었다. 이러한 검증을 토대로 본 해석기법이 실제 상부구조물-말뚝지지 전면기초설계에 적용 가능할 것으로 판단된다.

Keywords

References

  1. Brown, P. T. and Yu, K. R. (1986), "Load sequence and structurefoundation interaction", J. Struct. Eng., ASCE, 112(3), pp.481-488. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(481)
  2. Burland, J. B., Broms, B. B., and De Mello, V.F.B. (1977), "Behaviour of founadations and structures", Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.495-549.
  3. Butterfield, R. and P. K. Banerjee (1971), "The problem of pile group-cap interaction", Geotechnique, 21, pp.135-142. https://doi.org/10.1680/geot.1971.21.2.135
  4. Cho, J. Y., Lee, S. J., and Jeong, S. S. (2010a), "A study on the optimum design of piled-raft foundation considering pile head condition", Journal of Korean Geotechnical Society (KGS), Vol.26, No.12, pp.31-40.
  5. Cho, J. Y. and Jeong, S. S. (2012), "Development of three-dimensional approximate analysis method for piled raft foundations", Journal of Korean Geotechnical Society(KGS), Vol.28, No.4, pp.67-78. https://doi.org/10.7843/kgs.2012.28.4.67
  6. Chore, H. S., Ingle, R. K., and Sawant, V. A. (2010), "Building frame-pile foundation-soil interaction analysis:a parametric study", Interaction and Multiscale Mechanics, Vol.3, No.1, pp.55-79. https://doi.org/10.12989/imm.2010.3.1.055
  7. Cho, S. H., Kim, H. W., and Kim, Z. C. (2010b), "A case study on the design and construction of the pile bent system", Proceedings, KGS national conference, pp.357-367.
  8. Dutta, S. C. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soil-foundation-structure system", Computer. Struct., Vol.80, pp.1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3
  9. FHWA (1999), "Drilled Shafts: Construction Procedures and Design Methods", FHWA Publication No. FHWA-IF-99-025. Department of Transportation, Federal Highway Administration, Office of Implementation, McLean, VA.
  10. Jeong, S. S., Lee, J. H., and Lee, C. J. (2004), "Slip effect at the pile-soil interface on dragload", Computers & Geotechnics, Vol.31, pp.115-126. https://doi.org/10.1016/j.compgeo.2004.01.009
  11. Jeong, S. S., Seo, D. H., and Kim, Y. H. (2009), "Numerical analysis of passive pile groups in offshore soft deposits", Computers & Geotechnics, Vol.36, pp.1164-1175. https://doi.org/10.1016/j.compgeo.2009.05.003
  12. Lee, J. H., Kim, Y. H., and Jeong, S. S. (2010), "Three-dimensional analysis of bearing behavior of piled raft on soft clay", Computers & Geotechnics, Vol.37, pp.103-114. https://doi.org/10.1016/j.compgeo.2009.07.009
  13. Katzenbach, R. Arslan, U. and Moormann, C. (2000), "Piled raft foundations projects in Germany", Design applications of raft foundations, Hemsley, J. A. Editor, Thomas Telford, pp.323-392.
  14. Katzenbach, R. Schmitt, A., and Turek, J. (2005), "Assessing settlement of high-rise structures by 3D simulations," Computer-Aided Civil and Infrastructure Engineering, 20, pp.221-229. https://doi.org/10.1111/j.1467-8667.2005.00389.x
  15. Kim, Y. H. and Jeong, S. S. (2010), "Analysis of soil resistance on laterally loaded piles considering soil continuity", Journal of Korean Society of Civil Engineers (KSCE), Vol.26, No.12, pp. 31-40.
  16. Mandolini, A., Russo, G., and Viggiani, C. (2005), "Piled foundations: Experimental I nvestigations, analysis and design," State-of-the-Art Rep. Proc., 16th ICSMGE, Osaka, Japan, Vol.1, pp.177-213.
  17. Nataralan, K. and Vidivelli, B. (2009), "Effect of column spacing on the behavior of frame-raft and soil system", J. Appl. Sci., 9(20), pp.3629-3640. https://doi.org/10.3923/jas.2009.3629.3640
  18. O'Neill, M. W., O. I. Ghazzaly, and H. B. Ha (1977), "Analysis of Three-dimensional Pile Groups with Nonlinear Soil Response and Pile-Soil-Pile Interaction", Proceedings, Ninth offshore Technology Conference, Vol.II, pp.245-256.
  19. Ottaviani, M. (1975), "Three-Dimensional Finite element Analysis of Vertically loaded pile groups", Geotechnique, 25, pp.159-174. https://doi.org/10.1680/geot.1975.25.2.159
  20. PLAXIS 3D Foundation: PLAXIS 3D foundation user manual, Version 2.0, Brinkgreve, R. B. and Swolfs, W. M., PLAXIS Inc, 2008.
  21. Poulos, H. G. (1979), "Group factors for pile-deflection estimation", J. Geotech. Engrg., ASCE, Vol.105, No.12, pp.1489-1509.
  22. Poulos, H. G. (2001), "Piled raft foundations : design and applications", Geotechnique, 51, No.2, pp.95-113. https://doi.org/10.1680/geot.51.2.95.40292
  23. Randoph, M. F. (1981), "The response of flecible piles to lateral loading", Geotechnique, 31, pp.247-259. https://doi.org/10.1680/geot.1981.31.2.247
  24. Randolph, M. F. (1994), "Design Methods for pile groups and piled rafts", Proceedings of 13th ICSMFE, New Delhi, India, Vol.5, pp.61-82.
  25. Reese, L. C. (1977), "Laterally Loaded Piles: Program Documentation", J. Geotech. Eng. Div., Vol.103.
  26. Reese, L, C., K. Awoshika, P. H. Lam, and S. T. Wang (1990), "Analysis of a group of piles subjected to axial and lateral loading", Group version 2.0, Ensoft, Austin, TX.
  27. Reul, O. and Randolph, M.F. (2003), "Piled rafts in overconsolidated clay-Comparison of in-situ measurements and numerical analyses," Geotechnique, Vol.53, No.3, pp.301-315. https://doi.org/10.1680/geot.2003.53.3.301
  28. Viladkar, M. N., Noorzaei, J., and Godbole, P. N. (1994), "Interactive analysis of a space frame-raft-soil system considering soil nonlinearity", Computer. Struct., Vol.51, pp.343-356. https://doi.org/10.1016/0045-7949(94)90320-4
  29. Won, J. O., Jeong, S. S., Lee, J. H., and Jang, S. Y. (2006), "Nonlinear three- dimensional analysis of pile group supported columns considering pile cap flexibility", Computers & Geotechnics, Vol.33, pp.355-370. https://doi.org/10.1016/j.compgeo.2006.07.007
  30. Zafir, Z. (2002), "Seismic Foundation Stiffness For Bridges", Deep Foundations 2002, pp.1421-1433.