DOI QR코드

DOI QR Code

Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River

낙동강 하류 하천구조물 건설 전후의 충적층 지하수위 시계열 특성 비교

  • Received : 2013.03.28
  • Accepted : 2013.05.27
  • Published : 2013.06.30

Abstract

Increasing the river cross-section by barrage construction causes rises in the average river water levels and discharge rates in the rainy season. The time series patterns for groundwater levels measured at 23 riverside monitoring wells along the lower Nakdong River are compared for two cases: before and after water-filling at the Changnyeong-Haman Barrage. Monthly average groundwater levels indicate a distinct increase in groundwater levels in the upstream riverside close to the barrage. River-water level management by barrage gate control in August, during the rainy season, resulted in a 0.1 m decrease in groundwater levels, while water-filling at the barrage in December caused a 1.3 m increase in groundwater levels. The results of hierarchical cluster analysis indicate that seven groundwater monitoring wells and river water levels were in the same group before barrage construction, but that this number increased to 14 after barrage construction. Principal component analysis revealed that the explanation power of two principal components corresponding to river fluctuation, PC1 and PC2, was approximately 82% before barrage construction but decreased to 45% after construction. This finding indicates that the effect of the river level component that contributes to change in groundwater level, decreases after barrage construction; consequently, other factors, including groundwater pumping, become more important. Continuous surveying and monitoring is essential for understanding change in the hydrological environment. Water policy that takes groundwater-surface water interaction into consideration should be established for riverside areas.

보의 건설 및 하천 단면의 증가는 하천 수위 상승과 호우기 유출량의 증가를 가져왔다. 낙동강 중하류에 설치된 23개의 지하수 관측망 지하수위 자료를 사용하여 보 담수 전후의 지하수위 시계열 변동 유형의 변화를 분석하였다. 월평균 지하수위 자료를 토대로 담수 전후의 지하수위를 비교한 결과 보의 직상류 주변 지역에서 지하수위 변동이 가장 크게 나타났으며, 8월의 경우 하천 수위 조절 효과로 월평균 지하수위가 0.1 m 감소하였으나 10월에는 1.3 m 상승한 것으로 나타났다. 지하수위 시계열 자료와 하천 수위 자료를 사용하여 군집분석을 실시한 결과, 담수 이전에는 7개 지하수 관측망의 자료가 하천 수위와 유사성 거리가 가까운 그룹이었으나, 담수 이후에는 14개로 증가하여 하천 수위와 유사한 그룹의 범위가 넓어졌다. 지하수위 시계열에 대한 주성분분석 결과, 담수 이전에는 하천 변동성을 대표하는 주성분(주성분 1과 주성분 2)의 설명력이 총 82%이었으나, 담수 이후에는 하천 변동성을 설명하는 주성분(주성분 1)의 설명력이 45%로 줄어들어 지하수위 자료를 설명하는데 하천 요인의 기여도가 줄고 인위적인 양수 등과 같은 기타 요인의 기여도가 높아졌다. 이와 같이 변화되는 수문 환경에 대비하여 지속적인 조사 및 관측이 필요하며, 하천 주변에서는 지표수와 연계되는 지하수 관리 정책이 수립될 필요가 있다.

Keywords

References

  1. Arumi, J. L., Rivera, D., Holzapfel, E., Boochs, P., Billib, M., and Fernald, A., 2009, Effect of the irrigation canal network on surface and groundwater interactions in the lower valley of the Cachapoal River, Chile, Chile Journal of Agricultural Research, 69(1), 12-20.
  2. Choi, S. O. and Yeo, S. C., 1972, Geological Map of the Namji area, Geological Survey of Korea, 27p (in Korean).
  3. Choi, Y. G. and Kim, T. Y., 1963, Geological Map of the Euiryeong area, Geological Survey of Korea, 29p (in Korean).
  4. Dreher, J. and Gunatilaka, A., 1996. Groundwater management in the city of Vienna. Modelling, testing & monitoring for hydro power plants-II, International Journal of Hydro Power and Dams, 2, 545-554.
  5. Harvey, F. E. and Sibray, S. S., 2001, Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes, Ground Water, 39(3), 408-421. https://doi.org/10.1111/j.1745-6584.2001.tb02325.x
  6. Hill, B. M., 1996, Use of a numerical model for management of shallow ground-water levels in the Yuma, Arizona area, Ground Water, 34(3), 397-404. https://doi.org/10.1111/j.1745-6584.1996.tb02020.x
  7. Hutchings, J. and Petrich, C. R., 2002, Influence of Canal Seepage on Aquifer Recharge near the New York Canal, The Idaho Department of Water Resources, IDaho, 31p.
  8. K-water, 2012, 4 Major Rivers Restoration Project;Technical Note, Daejeon, 193p.
  9. Kim, G. B., Son, Y. C., Lee, S. H., Jeong, A. C., Cha, E. J., and Ko, M. J., 2012, Understanding of surface water-groundwater connectivity in an alluvial plain using statistical methods, The Journal of Engineering Geology, 22(2), 207-221. https://doi.org/10.9720/kseg.2012.22.2.207
  10. Kim, N. J. and Lee, H. G., 1964, Geological Map of the Yeongsan area, Geological Survey of Korea, 52p (in Korean).
  11. MLTM (Ministry of Land, Transportation, and Maritime Affairs), 2011, Annual Report of Groundwater Monitoring in Korea, Seoul, 650p (in Korean).
  12. Mucha, I., 1999, Plenipotentiary of the Slovak Republic for Construction and Operation of Gab ikovo-Nagymaros Hydropower Scheme; Gab ikovo Part of the Hydroelectric Power Project Environmental Impact Review, Ground Water Consulting Ltd., Bratislava, Slovakia, 399p.
  13. Park, S. H., Cho, S. S., and Kim, S. S., 1999, Korean SPSS for Statistical Analysis, SPSS Academy, Seoul, 471p (in Korean).
  14. Renken, R. A., Dixon, J., Koehmstedt, J., Ishman, S., Lietz, A. C., Marella, R. L., Telis, P., Rogers, J., and Memberg, S., 2005, Impact of Anthropogenic Development on Coastal Ground-Water Hydrology in Southeastern Florida, 1900-2000, Circular 1275, U.S. Geological Survey, 77p.

Cited by

  1. Analytical and statistical approach for evaluating the effects of a river barrage on river-aquifer interactions vol.30, pp.21, 2016, https://doi.org/10.1002/hyp.10920
  2. Statistical Approach to River-Aquifer Interaction in the Lower Nakdong River Basin, Republic of Korea vol.65, 2016, https://doi.org/10.1002/ird.1998
  3. Spatio-Temporal Variations in Stream-Aquifer Interactions Following Construction of Weirs in Korea vol.54, pp.3, 2016, https://doi.org/10.1111/gwat.12373
  4. Enhanced monitoring of water quality variation in Nakdong River downstream using multivariate statistical techniques vol.57, pp.27, 2016, https://doi.org/10.1080/19443994.2015.1049963
  5. Characterizing the Impact of River Barrage Construction on Stream-Aquifer Interactions, Korea vol.8, pp.12, 2016, https://doi.org/10.3390/w8040137
  6. Evaluation of Goundwater Flow Pattern at the Site of Crystalline Rock using Time Series and Factor Analyses vol.19, pp.4, 2014, https://doi.org/10.7857/JSGE.2014.19.4.012
  7. Analysis of groundwater flow in a riverside alluvial basin using temperature and water level data vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.493
  8. Analysis of long-term water level change of Dongrae hot spring using time series methods vol.54, pp.5, 2018, https://doi.org/10.14770/jgsk.2018.54.5.529
  9. 제주도 지하수위 관측지점별 적정 확률분포형의 결정 vol.23, pp.1, 2013, https://doi.org/10.7857/jsge.2018.23.1.041
  10. Analysis of Characteristics of Forest Environmental Factors of Debris flow in Jeollabuk-do, korea vol.53, pp.5, 2019, https://doi.org/10.14397/jals.2019.53.5.63
  11. Pumped Well Drainage System Effects on Mitigating Barrage-Induced Inundation Problems in Low-Lying Plains vol.146, pp.1, 2013, https://doi.org/10.1061/(asce)ir.1943-4774.0001430
  12. Effects of Baekje Weir Operation on the Stream-Aquifer Interaction in the Geum River Basin, South Korea vol.12, pp.11, 2020, https://doi.org/10.3390/w12112984
  13. Changes in Stream-Aquifer Interactions Due to Gate Opening of the Juksan Weir in Korea vol.13, pp.12, 2013, https://doi.org/10.3390/w13121639