DOI QR코드

DOI QR Code

Understanding of Surface Water-Groundwater Connectivity in an Alluvial Plain using Statistical Methods

통계기법을 활용한 충적층내 지하수-지표수 연계 특성 해석

  • Kim, Gyoo-Bum (Geo-Water+ Research Center, K-water Research Institute) ;
  • Son, Young-Chul (Geo-Water+ Research Center, K-water Research Institute) ;
  • Lee, Seung-Hyun (Geo-Water+ Research Center, K-water Research Institute) ;
  • Jeong, An-Chul (Geo-Water+ Research Center, K-water Research Institute) ;
  • Cha, Eun-Jee (Geo-Water+ Research Center, K-water Research Institute) ;
  • Ko, Min-Jeong (Geo-Water+ Research Center, K-water Research Institute)
  • Received : 2012.03.30
  • Accepted : 2012.05.02
  • Published : 2012.06.30

Abstract

A statistical analysis of time series of water level at 27 groundwater monitoring wells was conducted to analyze the surface water-groundwater connectivity in the wide alluvial plains surrounding the Nakdong River, Korea. Change in groundwater level is strongly related to river water level, yielding an average cross-correlation coefficient of 0.601, which is much higher than that between rainfall and groundwater level (0.125). Principal component analysis of groundwater level indicates that wells in the study area can be classified into two groups: wells in Group A are located close to a river, have water levels closely related to river level, and generally show a large increase in groundwater level during heavy rainfall. On the other hand, wells in Group B located far from a river are relatively less related to river level. Including hydrologic and statistical analyses, geochemical analysis and temperature monitoring are additionally required to reveal the relationship between surface water level and groundwater level, and to assess the possibility of groundwater flooding.

낙동강 하류지역 주변 충적층 지역내 설치 운영중인 27개의 지하수 관측정의 시계열 자료를 활용하여 지표수와 지하수의 연계 특성 평가를 위한 통계적 분석을 수행하였다. 지하수위의 변화는 하천수위의 변화와 교차상관계수가 0.601로서 연관성이 높은 것으로 분석되었으며, 이는 강우와의 교차상관계수 0.125보다 매우 높다. 지하수위 시계열 자료에 대한 주성분 분석 결과, 연구지역내 지하수위는 2개의 그룹으로 분류된다. 이중에서 그룹 A에 속하는 하천에 인접한 관측정에서의 수위 변화는 하천수와 유사한 변동을 보이며 호우시의 지하수위 상승량도 상대적으로 크게 나타났다. 홍수 발생에 대한 지하수 기여에 대한 추가적 이해를 위해서는 지하수위 변동 특성을 기반으로 지구화학 분석 및 온도 계측 등이 추가적으로 수행될 필요가 있다.

Keywords

References

  1. 건설교통부, 한국수자원공사, 2005, 국가지하수관측망 주변 현황조사 및 변동특성 분석 부록(1편-5편), 서울.
  2. 국토해양부, 한국수자원공사, 2011, 2011 지하수 관측연보, 서울, 37-40.
  3. 김규범, 염병우, 2007, 국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교, 한국지하수토양환경학회지, 12(5), 86-97.
  4. 김규범, 2010, 충적층 지하수 관측지점의 강우량 대비지하수위 변동 자료를 활용한 비산출율 추정, 한국지반환경공학회 논문집, 11(6), 57-67.
  5. 김규범, 최두형, 신선호, 2011, 낙동강 하중도 딴섬의 지하수위 변동 및 수질 특성, 한국지반환경공학회 논문집, 2011, 12(2), 35-43.
  6. 김규범, 최두형, 정재훈, 2010, 강우 대비 지하수위 변동량을 이용한 비산출율 추정 기법의 적용성 고찰, 지질공학, 20(1), 61-70.
  7. 김남원, 정일문, 원유승, 2004, 완전 연동형 SWATModflow 결합모형 (1)모형의 개발, 한국수자원학회논문집, 37(6), 499-507.
  8. 김남장, 이홍규, 1964, 지질도폭 설명서-영산, 상공부, 국립지질조사소, 52p.
  9. 이상일, 김병찬, 김수민, 2004, 지표수-지하수를 연계한 수자원의 효율적 이용-(I)방법론, 한국수자원학회 논문집, 37(10), 789-798. https://doi.org/10.3741/JKWRA.2004.37.10.799
  10. 이소현, 김규범, 2010, 로지스틱 회귀분석을 이용한 가뭄 예측, 대한지질공학회 춘계학술발표회 논문집, 327-330.
  11. 이정환, 함세영, 정재열, 정재형, 박삼규, 김남훈, 김규범, 2010, 기흥터널 건설에 따른 지하수 변화 수치모델링, 지질공학, 20(4), 449-459.
  12. 전항탁, 김규범, 2011, 온도, 유동특성 및 지화학분석 자료를 이용한 지표수-지하수 연계특성 평가, 지질공학, 21(1), 45-55. https://doi.org/10.9720/kseg.2011.21.1.045
  13. 정일문, 이정우, 김남원, 2011, 지표수-지하수 통합모형을 이용한 무심천 유역의 지하수 개발가능량 산정, 자원환경지질, 44(5), 433-442. https://doi.org/10.9719/EEG.2011.44.5.433
  14. 최승오, 여상철, 1972, 지질도폭 설명서-남지, 과학기술처, 국립지질조사소, 27p.
  15. 최유구, 김태열, 1963, 지질도폭 설명서-의령, 상공부, 국립지질조사소, 29p.
  16. 최현미, 이진용, 하규철, 김기표, 2011, 제주도 수리자료에 대한 시계열 분석 및 지하수 함양률 추정 연구, 지질공학, 21(4), 337-348. https://doi.org/10.9720/kseg.2011.21.4.337
  17. Adams, B., Bloomfield, J., Gallagher, A., Jackson, C., Rutter, H., and Williams, A., 2008, FLOOD 1 Final Report, Groundwater Resources Programme, Open Report OR/08/055, British Geological Survey, Keyworth, Nottingham, 65p.
  18. Bloomfield, J.P., McKenzie, A.A., Rutter, H.K., and Hulbert, A., 2007, Methodology for Mapping Geological Controls on Susceptibility to Groundwater Flooding. British Geological Survey Internal Report, IR/07/072, 55p.
  19. Bradford, R.B. and Croker, K.M., 2007, Application of head-flow responses to groundwater floods in Chalk catchments, Quarterly Journal of Engineering Geology and Hydrogeology, 40, 67-74. https://doi.org/10.1144/1470-9236/05-052
  20. Habets, F., Gascoin, S., Korkmaz, S., Thiry, D., Zribi, M., Amraoui, N., Carli, M., Ducharne, A., Leblois, E., Ledoux, E., Martin, E., Noilhan, J., Ottl, C., and Viennot, P., 2010, Multi-model comparison of a major flood in the groundwater-fed basin of the Somme River (France), Hydrology and Earth System Sciences, 14, 99-117. https://doi.org/10.5194/hess-14-99-2010
  21. Hannah, D.M., Smith, B.P.G., Gurnell, A.M., and McGregor, G.R., 2000, An approach to hydrograph classification, Hydrological Processes, 14(2), 317-338. https://doi.org/10.1002/(SICI)1099-1085(20000215)14:2<317::AID-HYP929>3.0.CO;2-T
  22. Heliotus, F.D. and DeWitt, C.B., 1987, Rapid water table responses to rainfall in a northern peatland ecosystem, Water Resources Bulletin, 23, 1011-1016. https://doi.org/10.1111/j.1752-1688.1987.tb00850.x
  23. Lee, L.J.E., Lawrence, D.S.L., and Price, M., 2006, Analysis of water level response to rainfall and implications for recharge pathways in the chalk aquifer, SE England, Journal of Hydrology, 330(3-4), 604-620. https://doi.org/10.1016/j.jhydrol.2006.04.025
  24. Marsh, T.J. and Dale, M., 2002, The UK floods of 2000- 2001: A hydrometeorological appraisal, The CIWEM Journal, 16, 180-188.
  25. Morel-Seytoux, H.J., Meyer, P.D., Nachabe, M., Touma, J., van Genuchten, M.T., and Lenhard, R.J., 1996, Parameter equivalence for Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive, Water Resources Research, 32(5), 1251-1258. https://doi.org/10.1029/96WR00069
  26. Morris, S.E., Cobby, D., and Parkes, A., 2007, Towards groundwater flood risk mapping, Quarterly Journal of Engineering Geology and Hydrogeology, 40, 203-211. https://doi.org/10.1144/1470-9236/05-035
  27. Upton, K.A. and Jackson, C.R., 2011, Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of hydrograph classification and lumped parameter models, Hydrological Processes, 25, 1949-1963, DOI: 10.1002/hyp.7951.
  28. U.S. Army Corps of Engineers, 1997, Post Event Report - Winter storm of 1996-97, Federal Disaster DR1159, Western Washington Summary: Seattle, Wash., Federal Emergency Management Agency, final document May 16, 1997, 38p.
  29. Weeks, E.P., 2002, The Lisse effect revisited, Ground Water, 40, 652-656. https://doi.org/10.1111/j.1745-6584.2002.tb02552.x
  30. Winter, T.C., Mallory, S.E., Allen, T.R., and Rosenberry, D.O., 2000, The use of principal component analysis for interpreting ground-water hydrographs, Ground Water, 38, 234-246. https://doi.org/10.1111/j.1745-6584.2000.tb00335.x

Cited by

  1. Analysis on the Correlation between Hydrological Data and Raw Water Turbidity of Han River Basin vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.1
  2. Optimal distribution of groundwater monitoring wells near the river barrages of the 4MRRP using a numerical model and topographic analysis vol.73, pp.9, 2015, https://doi.org/10.1007/s12665-014-3802-8
  3. Evaluation of Goundwater Flow Pattern at the Site of Crystalline Rock using Time Series and Factor Analyses vol.19, pp.4, 2014, https://doi.org/10.7857/JSGE.2014.19.4.012
  4. Impacts of Seasonal Pumping on Stream Depletion vol.21, pp.1, 2016, https://doi.org/10.7857/JSGE.2016.21.1.061
  5. Changes in shallow groundwater levels and hydrochemistry according to depositional environment, river water level and groundwater pumping in the riversides vol.51, pp.1, 2015, https://doi.org/10.14770/jgsk.2015.51.1.67
  6. Spatio-Temporal Variations in Stream-Aquifer Interactions Following Construction of Weirs in Korea vol.54, pp.3, 2016, https://doi.org/10.1111/gwat.12373
  7. Analysis of groundwater flow in a riverside alluvial basin using temperature and water level data vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.493
  8. Numerical Simulation of Groundwater System Change in a Riverside Area due to the Construction of an Artificial Structure vol.22, pp.3, 2012, https://doi.org/10.9720/kseg.2012.3.263
  9. Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.105
  10. Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea vol.49, pp.3, 2016, https://doi.org/10.9719/EEG.2016.49.3.167
  11. Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River vol.23, pp.2, 2013, https://doi.org/10.9720/kseg.2013.2.105
  12. Characteristics of spatio-temporal distribution of groundwater level’s change after 2016 Gyeong-ju earthquake vol.54, pp.1, 2018, https://doi.org/10.14770/jgsk.2018.54.1.93
  13. Development of a distributed hydrological model considering hydrological change vol.45, pp.3, 2012, https://doi.org/10.7744/kjoas.20180040
  14. 산소/수소안정동위원소를이용한지하수-지표수연계성연구: 논산시왕전리수막 재배지역 사례 vol.51, pp.6, 2012, https://doi.org/10.9719/eeg.2018.51.6.567
  15. Estimating the Threshold Value of Disaster-Causing Snowfall by Region and Its Application to Regional Classification vol.20, pp.1, 2020, https://doi.org/10.9798/kosham.2020.20.1.41