DOI QR코드

DOI QR Code

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea

황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지

  • Ha, Hun Jun (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Chun, Seung Soo (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Chang, Tae Soo (Korea Institute of Geosciences & Mineral Resources)
  • 하헌준 (전남대학교 지구환경과학부) ;
  • 전승수 (전남대학교 지구환경과학부) ;
  • 장태수 (한국지질자원연구원 해저지질연구실)
  • Received : 2013.04.10
  • Accepted : 2013.08.01
  • Published : 2013.08.30

Abstract

In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.

대부분 니질 퇴적물로 구성된 황해 남동부 흑산니질대 퇴적물의 기원지를 밝히기 위해 퇴적물 시료에 대해 주성분 원소와 희토류 원소(REE)를 분석하였다. 표층 퇴적물 시료는 흑산니질대 내 51지점에서 피스톤식과 박스형 시료 채취기로 획득하였다. 흑산니질대의 표층퇴적물은 니 퇴적물이 우세하게 나타나며, 평균입도는 $5-6{\phi}$이다. 공간적으로 북쪽지역은 실트함량이 높고, 남쪽지역으로 갈수록 점토함량이 증가한다. 흥미롭게도 주성분 원소와 희토류 원소 함량 특성은 퇴적물 기원 해석에 있어 다른 결과를 가져왔다. Fe/Al과 Mg/Al 함량 비, $Al_2O_3$와 MgO 함량 비, $Al_2O_3$$K_2O$를 각각 도시한 결과, 흑산니질대 퇴적물은 한국 기원의 퇴적물이 우세한 것으로 나타났다. 하지만 희토류 원소의 특성은 중국 기원의 퇴적물이 우세함을 반영한다. 이러한 기원 불일치는 각 원소의 함량 조절요인이 다르기 때문이다. 주성분 원소는 입도와 높은 상관관계를 고려할 때 입도에 따라 그 함량이 영향을 받는 것으로 해석된다. 반면에 희토류 원소는 입도와는 상관관계가 낮으며, 중광물 함량에 의해 조절되는 것으로 사료된다. 이와 같이, 각기 다른 추적자에 따른 기원의 불일치를 해결하기 위해 추가적인 연구가 필요하다.

Keywords

References

  1. Alexander, C.R., DeMaster, D.J., and Nittrouer, C.A., 1991, Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology, 98, 51-72. https://doi.org/10.1016/0025-3227(91)90035-3
  2. Calvert, S.E., 1976, The mineralogy and geochemistry of near-shore sediments. In Riley, J.P. and Chester, R. (ed.), Academic Press, London, 6, 187-280.
  3. Carver, R.E., 1971, Procedures in Sedimentary Petrology. Wiley-Interscience, New York, 652 p.
  4. Cho, H.G., Kim, S.O., and Yi, H.I., 2012, Clay mineral distribution and characteristics in the southeastern Yellow Sea mud deposits. Journal of Mineralogical Society of Korea, 25, 163-173. (in Korean) https://doi.org/10.9727/jmsk.2012.25.3.163
  5. Cho, Y.G., Lee, C.B., and Choi, M.S., 1999, Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 159, 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  6. Choi, J.Y., Lim, D.I., Park, C.H., Kim S.Y., Kang. S.R., and Jung, J.S., 2010, Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit. Journal of the Geological society of Korea, 46, 497-509. (in Korean)
  7. Chough, S.K. and Kim, D.C., 1981, Dispersal of finegrained sediments in the southeastern Yellow Sea: a steady-state model. Journal of Sedimentary Petrology, 51, 721-728.
  8. Chough, S.K., Kim, J.W., Lee, S.H., Shinn, Y.J., Jin, J.H., Suh, M.C., and Lee, J.S., 2002, High-resolution acoustic characteristics of epicontinental sea deposits, centraleastern Yellow Sea. Marine Geology, 188, 317-331. https://doi.org/10.1016/S0025-3227(02)00379-1
  9. Folk, R.L., 1968, Petrology of Sedimentary Rocks. Hemphill's, Austin, Texas, 170 p.
  10. Jin, J.H., and Chough, S.K., 1998, Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Marine Geology, 149, 79-92. https://doi.org/10.1016/S0025-3227(98)00023-1
  11. Jung, H.S., Lim, D.I., Yang, S.Y., and Yoo, H.S., 2006, Constraints of REE distribution patterns in core sediments and their provenance, northern East China Sea. Economic and Environmental Geology, 39, 39-51. (in Korean)
  12. Khim, B.K., 1988, Sedimentological study of the muddy deposition in the Yellow Sea, Unpublished M.S. thesis, Seoul National University, Seoul, Korea, 106 p.
  13. Klaver, G. Th., and van Weering, T.C.E., 1993, Rare earth element fractionation by selective sediment dispersal in surface sediments: the Skagerrak. Marine Geology, 111, 345-359. https://doi.org/10.1016/0025-3227(93)90140-Q
  14. Kong, G.S., Park, S.-C., Han, H.-C., and Chang, J.H., Mackensen, A., 2006, Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea. Quaternary International, 144, 38-52. https://doi.org/10.1016/j.quaint.2005.05.011
  15. Lee, H.J., and Chu, Y.S., 2001, Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan Mud Belt. Journal of Sedimentary Research, 71, 144-154. https://doi.org/10.1306/040700710144
  16. Lim, D.I., 2003, Geochemical compositions of coastal sediments around Joju Island, South Sea of Korea: potential provenance of sediment. Journal of Korean Earth Science Society, 24, 337-345.
  17. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C., and Ahn, K.S., 2007a, Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Progress in Oceanography, 73, 145-159. https://doi.org/10.1016/j.pocean.2007.02.004
  18. Lim, D.I., Shin, I.H., and Jung, H.S., 2007b, Major elemental compositions of Korean and Chinese river sediments: potential tracers for the discrimination of sediment provenance in the Yellow Sea. Journal of Korean Earth Science Society, 28, 311-323. (in Korean) https://doi.org/10.5467/JKESS.2007.28.3.311
  19. McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineralogical Society of America Reviews in Mineralogy, 21, 169-200.
  20. Milliman, J.D. and Meade, R.H., 1983, World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 1-21. https://doi.org/10.1086/628741
  21. Moon, D.H., Yi, H.I., Shin, K.H., Do, J.Y., and Cho, H.G., 2009, Mineral distribution of the southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis. Journal of Mineralogical Society of Korea, 22, 49-61. (in Korean)
  22. Nesbitt, H.W., Markovics G., and Prince, R.C., 1980, chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
  23. Park, S.C., Lee, H.H., Han, H.S., Lee, G.H., Kim, D.C., and Yoo, D.G., 2000, Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology, 170, 271-288. https://doi.org/10.1016/S0025-3227(00)00099-2
  24. Park, Y.A., and Khim, B.K., 1992, Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology, 104, 205-213. https://doi.org/10.1016/0025-3227(92)90095-Y
  25. Song, Y.H., and Choi, M.S., 2009, REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chemical Geology, 266, 328-342. https://doi.org/10.1016/j.chemgeo.2009.06.019
  26. Taylor, S.R., and McLennan, S.M., 1995, The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241-265. https://doi.org/10.1029/95RG00262
  27. Vital, H., Stattegger, K, and Garbe-Schonberg, C.D., 1999, Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River: a provenance study. Journal of Sedimentary Research, 69, 563-575. https://doi.org/10.2110/jsr.69.563
  28. Wei, J.W., Shi, X.F., Xin, C.Y., and Chen, Z.H., 2000, Distribution patterns of clay minerals in the Yellow Sea and their significance. Yellow Sea: epicontinental shelf in Asia. Proceedings of First Korea-China Symposium on Sedimentary Processes and Depositional Environments, Ansan, Korea, April 6-9, 2000. Seoul, Korea, 179-186.
  29. Xu, Z., Lim, D.I., and Choi, J.Y., 2009, Rare earth elements in bottom sediments of major rivers around the Yellow Sea: implications for sediment provenance. Geo-Marine Letters, 29, 291-300. https://doi.org/10.1007/s00367-009-0142-x
  30. Yang, S.Y., Jung, H.S., Choi, M.S., and Li, C.X., 2002, The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters, 201, 407-419. https://doi.org/10.1016/S0012-821X(02)00715-X
  31. Yang, S.Y., Jung, H.S., and Li, C.X., 2004, Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology, 164, 19-34. https://doi.org/10.1016/j.sedgeo.2003.08.001
  32. Yang, S.Y., Jung, H.S., Lim, D.I., Lim, D.I., and Li, C.X., 2003, A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  33. Youn, J.S., Byun, J.C., and Kim, Y.S., 2006, Geochemical characteristics of the outer-shelf muddy sediments in the East China Sea. Journal of Korean Earth Science Society, 27, 198-208. (in Korean)
  34. Youn, J.S., and Kim, T.J., 2008, Geochemical composition and provenance of surface sediments in the western part of Jeju Island, Korea. Journal of Korean Earth Science Society, 29, 328-340. (in Korean) https://doi.org/10.5467/JKESS.2008.29.4.328
  35. Zhang, C.S., Wang, L.J., and Zhang, S., 1998, Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry, 13, 451-462. https://doi.org/10.1016/S0883-2927(97)00079-6

Cited by

  1. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea vol.35, pp.6, 2015, https://doi.org/10.1007/s00367-015-0417-3
  2. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements vol.35, pp.6, 2015, https://doi.org/10.1007/s00367-015-0416-4
  3. Paleoenvironmental Research Using Diatoms from Core Sediments in the Heuksan Mud belt, Korea vol.37, pp.6, 2016, https://doi.org/10.5467/JKESS.2016.37.6.325
  4. Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud pp.1598-7477, 2018, https://doi.org/10.1007/s12303-018-0019-y