DOI QR코드

DOI QR Code

Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes

고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성

  • Received : 2013.04.02
  • Accepted : 2013.06.13
  • Published : 2013.06.30

Abstract

There was a study for biological characteristics, except for physico-chemical and mineralogical properties, on the natural bentonite that is considered as a buffer material for the high-level radioactive waste disposal site. A bentonite slurry that was prepared from a local 'Gyeongju bentonite' in Korea was incubated in a serum bottle with nutrient media over 1 week and its stepwise change was observed with time. From the activated bentonite in the nutrient media, we can find a certain change of both solid and liquid phases. Some dark and fine sulfides began to be generated from dissolved sulfate solution, and 4 species of sulfate-reducing bacteria (SRB) were identified as living cells in samples that were periodically taken and incubated. These results show that sulfate-reducing (or metal-reducing) bacteria are adhering and existing in the powder of bentonite, suggesting that there may be a potential occurrence of longterm biogeochemical effects in and around the bentonite buffer in underground anoxic environmental conditions.

고준위방사성폐기물 처분장의 완충재로 고려되고 있는 자연산 벤토나이트에 대해서 기존의 물리 화학적 및 광물학적 성질 외에 생물학적 특성을 살펴보았다. 국내산 '경주벤토나이트'를 대상으로 만든 현탁액을 영양배지 세럼병에서 일주일 이상 숙성시키며 시간에 따른 벤토나이트의 변화를 관찰하였다. 영양배지에서 활성화된 벤토나이트는 고체 시료뿐만 아니라 용액도 함께 변하였다. 용존황산염 수용액으로부터 검은색의 미립자 황화물이 생성되기 시작하였으며, 시료를 채취하여 배양한 결과 4 종류의 황산염환원박테리아(SRB)가 자체 생존하고 있음이 확인되었다. 이러한 결과는 벤토나이트 분말시료 내에 황산염환원(혹은 금속환원)박테리아가 고착 및 서식하고 있음을 말해주는 것으로, 이는 지하의 환원환경 조건하에서 완충재 내외부에 장기적으로 생지화학적 영향이 발현될 가능성이 있음을 의미한다.

Keywords

References

  1. J.Y. Lee, D.K. Cho, H.J. Choi and J.W. Choi, "Concept of a Korean Reference Disposal System for Spent Fuels", J. Nucl. Sci. Technol., 44(12), pp. 1565-1573 (2007). https://doi.org/10.1080/18811248.2007.9711407
  2. R. Pusch and T. Carlsson, "The physical state of Nasmectite used as barrier component", Eng. Geol. 21, pp. 257-265 (1985). https://doi.org/10.1016/0013-7952(85)90016-X
  3. J.O. Lee, W.J. Cho and C.H. Kang, "Effect of Dry Density on Technetium Diffusion in Compacted Bentonite", Environ. Eng. Res., 7(4), pp. 219-225 (2002). https://doi.org/10.4491/eer.2002.7.4.219
  4. M.H. Baik, S.Y. Lee, J.K. Lee, S.S. Kim, C.K. Park and J.W. Choi, "Review and Complication of Data on Radionuclide Migration and Retardation for the Performance Assessment of a HLW Repository in Korea", Nucl. Eng. Technol., 40(7), pp. 593-606 (2008). https://doi.org/10.5516/NET.2008.40.7.593
  5. J.O. Lee, K.J. Lee and W.J. Cho, "Sorption and Diffusion of I-125 and Sr-90 in a Mixture of Bentonite and Crushed Granite Backfill of a Radioactive Waste Repository", Radiochim. Acta, 76, pp. 143-151 (1997).
  6. J.O. Lee and W.J. Cho, "Determination of Water Content in Compacted Bentonite using a Hygrometer and Its Application", J. Korean Radioact. Waste Soc., 7(2), pp. 101-107 (2009).
  7. P. Masurat, S. Eriksson and K. Pedersen, "Evidence of Indigenous Sulphate-Reducing Bacteria in Commercial Wyoming Bentonite MX-80", Appl. Clay Sci., 47, pp. 51-57 (2010). https://doi.org/10.1016/j.clay.2008.07.002
  8. P. Masurat, S. Eriksson and K. Pedersen, "Microbial Sulphide Production in Compacted Wyoming Bentonite MX-80 under In Situ Conditions Relevant to a Repository for High-Level Radioactive Waste", Appl. Clay Sci., 47, pp. 58-64 (2010). https://doi.org/10.1016/j.clay.2009.01.004
  9. S.Y. Lee, M.H. Baik and J.K. Song, "Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal", Econ. Environ. Geol., 42(5), pp. 471-477 (2009).
  10. S.Y. Lee, M.H. Baik, Y. Roh and J.M. Oh, "The effects of Fe-Bearing Minerals on the Interaction between Underground Dissimilatory Metal-Reducing Bacteria and Dissolved Uranium", J. Geol. Soc. Korea, 46(4), pp. 357-366 (2010).
  11. S.Y. Lee, J.M. Oh and M.H. Baik, "Interaction between Selenium and Bacterium and Mineralogical Characteristics of Biotreated Selenium", J. Miner. Soc. Korea, 24(3), pp. 217-224 (2011). https://doi.org/10.9727/jmsk.2011.24.3.217
  12. S.Y. Lee, M.H. Baik and J.W. Choi, "Biogenic Formation and Growth of Uraninite ($UO_2$)", Environ. Sci. Technol., 44(22), pp. 8409-8414 (2010). https://doi.org/10.1021/es101905m
  13. S.P. Yim, J.H. Lee, H.J. Choi, J.W. Choi and C.K. Lee, "An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing $Ag_2O$", J. Korean Radioact. Waste Soc., 9(1), pp. 33-40 (2011). https://doi.org/10.7733/jkrws.2011.9.1.33
  14. J.M. Oh, S.Y. Lee, M.H. Baik and Y. Roh, "Characterization of Uranium Removal and Mineralization by Bacteria in Deep Underground, Korea Atomic Energy Research Institute (KAERI)", J. Miner. Soc. Korea, 23(2), pp. 107-115 (2010).
  15. C.H. Jeong, "Mineral-Water Interaction and Hydrogeochemistry in the Samkwang Mine Area, Korea", Geochem. J., 35, pp. 1-12 (2001). https://doi.org/10.2343/geochemj.35.1
  16. C.H. Jeong, H.J. Kim and S.Y. Lee, "Hydrochemistry and Genesis of $CO_2$-Rich Springs from Mesozoic Granitoids and Their Adjacent Rocks in South Korea", Geochem. J., 39, pp. 517-530 (2005). https://doi.org/10.2343/geochemj.39.517
  17. S.Y. Lee, J.M. Oh, M.H. Baik and Y.J. Lee, "Change of Oxidation/Reduction Potential of Solution by Metal-Reducing Bacteria and Roles of Biosynthesized Mackinawite", J. Miner. Soc. Korea, 24(4), pp. 279-287 (2011). https://doi.org/10.9727/jmsk.2011.24.4.279
  18. S.Y. Lee, J.M. Oh and M.H. Baik, "Uranium Removal by D. baculatum and Effects of Trace Metals", J. Miner. Soc. Korea, 24(2), pp. 83-90 (2011). https://doi.org/10.9727/jmsk.2011.24.2.083

Cited by

  1. Microbial copper reduction method to scavenge anthropogenic radioiodine vol.6, pp.1, 2016, https://doi.org/10.1038/srep28113
  2. Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.219
  3. 벤토나이트 완충재의 구리치환 반응 특성 vol.27, pp.4, 2013, https://doi.org/10.9727/jmsk.2014.27.4.293
  4. 지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향 vol.51, pp.2, 2013, https://doi.org/10.9719/eeg.2018.51.2.77