DOI QR코드

DOI QR Code

Numerical Analysis of Internal Flow Distribution in Scale-Down APR+

축소 APR+ 원자로 모형에서의 내부유동분포 수치해석

  • 이공희 (한국원자력안전기술원 안전해석평가실) ;
  • 방영석 (한국원자력안전기술원 안전해석평가실) ;
  • 우승웅 (한국원자력안전기술원 안전해석평가실) ;
  • 김도형 (앤플럭스(주)) ;
  • 강민구 (앤플럭스(주))
  • Received : 2012.12.13
  • Accepted : 2013.07.12
  • Published : 2013.09.01

Abstract

A series of 1/5 scale-down reactor flow distribution tests had been conducted to determine the hydraulic characteristics of an APR+ (Advanced Power Reactor Plus), which were used as the input data for an open core thermal margin analysis code. In this study, to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ internal flow, simulations were conducted using the commercial multi-purpose computational fluid dynamics software ANSYS CFX V.14. It was concluded that the porous domain approach for some reactor internal structures could adequately predict the flow characteristics inside a reactor in a qualitative manner. If sufficient computational resources are available, the predicted core inlet flow distribution is expected to be more accurate by considering the real geometry of the internal structures, especially upstream of the core inlet.

개방 노심 열적여유도 해석 코드에 입력으로 제공되는 APR+ (Advanced Power Reactor Plus)의 수력학적 특징을 결정하기 위해 일련의 1/5 축소 원자로 유동분포 시험이 수행되었다. 본 연구에서는 원자로 내부 유동 계산시 다공성 모델을 사용한 전산유체역학의 적용성을 평가하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX V.14를 사용하여 계산을 수행하였다. 결론적으로 본 연구에서 사용한 일부 원자로 내부 구조물에 대한 다공성 영역 처리방식을 통해 원자로 내부의 유동 특성을 정성적으로 적절히 파악할 수 있을 것으로 판단된다. 만일 충분한 계산 자원이 확보된 조건인 경우라면 노심 입구 상류에 위치한 원자로 내부 구조물의 실제 기하 형상을 고려함으로써 노심 입구 유량분포를 보다 정확하게 예측할 수 있을 것으로 예상된다.

Keywords

References

  1. Lee, K. B., Im, I. Y., Lee, B. J. and Kuh, J. E., 1991, "YGN 3&4 Reactor Flow Model Test," Journal of the Korean Nuclear Society, Vol. 23, pp. 340-351.
  2. Euh, D. J., Kim, K. H., Youn, J. H., Bae, J. H., Chu, I. C., Kim, J. T., Kang, H. S., Choi, H. S., Lee, S. T. and Kwon, T. S., 2012, "A Flow and Pressure Distribution of APR+ Reactor Under the 4-Pump Running Conditions with a Balanced Flow Rate," Nuclear Engineering and Technology, Vol. 44, pp. 735-744. https://doi.org/10.5516/NET.02.2012.715
  3. Rohde, U., Hohne, T., Kliem, S., Hemstrom, B., Scheuerer, M., Toppila, T., Aszodi, A., Boros, I., Farkas, I., Muhlbauer, P., Vyskocil, L., Klepac, J., Remis, J. and Duryi, T., 2007, "Fluid Mixing and Flow Distribution in a Primary Circuit of a Nuclear Pressurized Water Reactor-Validation of CFD Codes," Nuclear Engineering and Design, Vol. 237, pp. 1639-1655. https://doi.org/10.1016/j.nucengdes.2007.03.015
  4. Eom, T.K. and Lee, J.Y., 2012, "Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor," Trans. Korean Soc. Mech. Eng. B, Vol. 36, pp. 189-196. https://doi.org/10.3795/KSME-B.2012.36.2.189
  5. ANSYS CFX, Version 14.0, ANSYS Inc.
  6. APR+ Standard Safety Analysis Report, Korea Hydro & Nuclear Power Co, LTD.
  7. Kwon, T.S., Kim, K. H., Chu, I.C. and Euh, D.J., 2012, "CFD Benchmark Calculation for the 1/5-Scale ACOP Core Flow Test," Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea.
  8. ANSYS CFX-Solver Modeling Guide, 2011, ANSYS Inc.
  9. Menter, F., 2001, "CFD Best Practice Guidelines for CFD Code Validation for Reactor Safety Applications," ECORA CONTRACT $N^{\circ}$ FIKS-CT-2001-00154.
  10. Bieder, U, Graffard, E., 2008, "Qualification of the CFD Code Trio_U for Full Scale Reactor Applications," Nuclear Engineering and Design, Vol. 238, pp. 671-679. https://doi.org/10.1016/j.nucengdes.2007.02.040
  11. Lee, B.J., Jang, H.C., Cheong, J.S., Baek S.J. and Park, Y.S., 2001, "A Review on the Regionalization Methodology for Core Inlet Flow Distribution Map," Journal of the Korean Nuclear Society, Vol. 33, pp. 441-456.
  12. Lee, G.H., Bang, Y.S. and Woo, S.W., 2012, "Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow inside CANDU Calandria," Trans. Korean Soc. Mech. Eng. B, Vol. 36, pp. 363-369. https://doi.org/10.3795/KSME-B.2012.36.3.363

Cited by

  1. Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow vol.37, pp.12, 2013, https://doi.org/10.3795/KSME-B.2013.37.12.1175
  2. Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution vol.38, pp.3, 2014, https://doi.org/10.3795/KSME-B.2014.38.3.271