DOI QR코드

DOI QR Code

Perfonnance Evaluation of Swaged- and Extruded-type Heat Sinks Used in Inverter for Solar Power Generation

태양광 발전용 인버터 방열에 사용되는 압입형 및 압출형 히트싱크의 방열 성능 평가

  • Kim, Jung Hyun (Division of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Lee, Gyo Woo (Division of Mechanical Design Engineering, Chonbuk Nat'l Univ.)
  • 김정현 (전북대학교 기계설계공학부) ;
  • 이교우 (전북대학교 기계설계공학부)
  • Received : 2013.06.07
  • Accepted : 2013.08.14
  • Published : 2013.10.01

Abstract

In this study, we evaluated the heat release performance of two extruded-type and two swaged-type heat sinks used in an inverter for solar power generation. The number of fins and heat transfer areas of the two swaged-type heat sinks, namely S-62 and S-98, are 62 and 98 and $2.8m^2$ and $5.3m^2$, respectively. Those for the two extruded-type heat sinks, namely, E-38 and E-47, are 38 and 47 and $1.8m^2$ and $1.9m^2$, respectively. The heat release fractions of S-62 and S-98 were measured as 82.7 % and 86.3 %, respectively. Those of E-38 and E47 were measured to be 79.6 % and 81.6 %, respectively. In this experiment, despite the mass flow rates of air entering the heat sinks being almost the same, the heat release fractions increased with heat transfer area. Furthermore, despite S-62's heat transfer area being 47.4 % higher than that of E-47, its heat release fraction was higher by only 1.3 %. We believe that this indicates the better heat transfer property of the extruded-type heat sink. S-98's heat release is only 4.4 % higher than that of S-62, but its heat transfer area is 89.3 % higher; this suggests that its heat transfer area need to be optimized.

본 실험에서는 실제 태양광 발전용 인버터의 냉각에 사용할 2개의 압출형과 2개의 압입형 히트싱크의 방열 성능을 평가하였다. 두 압입형 히트싱크의 핀의 개수는 62개와 98개, 전열면적은 $2.8m^2$, $5.3m^2$이고, 두 압출형 히트싱크의 핀의 개수는 38개와 47개, 전열면적은 $1.8m^2$, $1.9m^2$이다. 압입형 히트싱크의 방열율은 각각 82.7 %, 86.3 %, 압출형 히트싱크의 방열율은 각각 79.6 %, 81.6 %로 측정되었다. 각 히트싱크의 방열성능 평가결과에서 히트싱크의 전열면적이 증가할수록 방열율이 증가하는 경향을 보였다. 압입형인 S-62 히트싱크는 압출형인 E-47 히트싱크 보다 전열면적이 47.4 % 증가하였음에도 불구하고 방열량은 1.3% 증가하는데 그쳤다. 이는 압출형의 우수한 전열성능 때문인 것으로 판단된다. 또한 압입형인 S-98 히트싱크는 동일한 압입형인 S-62 히트싱크에 비해 전열면적이 89.3 % 증대되었음에도 방열량 증가는 4.4 %에 불과하여 전열면적에 대한 최적화가 필요함을 알 수 있었다.

Keywords

References

  1. Santi, E., Caiafa, A., Kang, X., Hudgins, J. L., Palmer, P. R., Goodwine, D. and Monti, A., 2004, "Temperature Effects on Trench-Gate Punch-Through IGBTs," IEEE Trans. on Industry Applications, Vol. 40, No. 2, pp. 472-482. https://doi.org/10.1109/TIA.2004.824513
  2. Lee, J. W., 2004, "Design of a Heat Dissipation System for the 400kW IGBT Inverter," The Trans. of the KIPE, Vol. 9, No. 4, pp. 350-355.
  3. Jeon, C. S., Kim, Y. K., Lee, J. Y. and Song, S. H, 1998, "Cooling of an In-line Array of Heat Sources with Air-Cooled Heat Sinks," Trans. Korean Soc. Mech. Eng. B, Vol. 2, No. 2, pp. 229-234.
  4. Kim, T. H., Do, K. H., Choi, B. I., Han, Y. S. and Kim, M. B, 2011, "Development of a Cooling System for a Concentrating Photovoltaic Module," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 6, pp. 551-560. https://doi.org/10.3795/KSME-B.2011.35.6.551
  5. Shaukatullah, H., Storr, W. R., Hansen, B. J. and Gaynes, M. A., 1996, "Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications," IEEE Trans. on Components, Packaging and Manufacturing Technology-Part A, Vol. 19, No. 4, pp. 486-494. https://doi.org/10.1109/95.554929
  6. Kim, J. H., Yun, J. H. and Lee, C. S., 2002, "An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks," SAREK, Vol. 14, No. 8, pp. 676-682.
  7. Lee, S., 1995, "Optimum Design and Selection of Heat Sinks," IEEE Trans. Components, Packaging and Manufacturing Technology-Part A, Vol. 18, No. 4, pp. 812-817. https://doi.org/10.1109/95.477468
  8. Riu, K. J., Park, C. W., Kim, H. W. and Jang, C. S., 2005, "Cooling Characteristics of a Strip Fin Heat Sink," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 1, pp. 16-26. https://doi.org/10.3795/KSME-B.2005.29.1.016
  9. White, F. M., 2011, "Fluid Mechanics," 5th ed., McGraw-Hill.
  10. Incropera, F. P., DeWitt, D. P., Bergman, T. L. and Lavine, A. S., 2006, "Introduction to Heat Transfer," 5th ed., John Wiley and Sons.