DOI QR코드

DOI QR Code

Practical Implementation of Memristor Emulator Circuit on Printed Circuit Board

PCB에 구현한 멤리스터 에뮬레이터 회로 및 응용

  • Received : 2013.09.02
  • Accepted : 2013.09.11
  • Published : 2013.09.30

Abstract

In this paper, we implemented memristor emulator circuit on Printed Circuit Board (PCB) and observed the inherent pinched hysteresis characteristic of memristors by measuring the emulator circuit on PCB. The memristor emulator circuit implemented on PCB is composed of simple discrete devices not using any complicated circuit blocks thus we can integrate the memristor emulator circuits in very small layout area on Silicon substrate. The programmable gain amplifier is designed using the proposed memristor emulator circuit and verified that the amplifier's voltage gain can be controlled by programming memristance of the emulator circuit by circuit simulation. Threshold switching is also realized in the proposed emulator circuit thus memristance can remain unchanged when the input voltage applied to the emulator circuit is lower than VREF. The memristor emulator circuit and the programmable gain amplifier using the proposed circuit can be useful in teaching the device operation, functions, characteristics, and applications of memristors to students when thet cannot access to device and fabrication technologies of real memristors.

본 논문에서는 멤리스터 에뮬레이터 회로를 PCB 보드 상에서 구현하여 이의 측정을 통해서 멤리스터의 고유한 pinched hysteresis 특성을 관찰하였다. PCB 보드 상에서 구현된 멤리스터 에뮬레이션 회로는 간단한 부품으로 구성되어 있고 복잡한 회로 블록을 사용하지 않았기 때문에 집적회로의 구현 시에도 매우 작은 면적으로 설계가 가능하다는 장점이 있다. 또한 본 논문에서는 프로그램 가능한 이득증폭기를 멤리스터 에뮬레이션 회로를 사용하여 설계해서 이 회로의 전압이득이 멤리스터의 저항의 프로그래밍을 통해서 조절이 가능하다는 것을 보였다. 이득증폭기에 사용되는 멤리스터 에뮬레이션 회로의 구현을 위해서 멤리스터 소자의 특성 중에 하나인 threshold switching 특성이 회로로 구현되어 VREF 보다 낮은 전압이 인가되었을 때는 멤리스터의 저항 값이 변하지 않도록 설계하였고 이의 동작을 시뮬레이션을 통해서 검증하였다. 본 논문에서 PCB 보드 상에서 구현되고 검증된 멤리스터 에뮬레이션 회로와 이 회로를 이용한 프로그램 가능한 이득증폭기는 멤리스터 소자의 실제 제작이 불가능한 경우에, 멤리스터의 동작과 기능, 특성 및 멤리스터 응용회로의 이해에 많은 도움이 될 것이다.

Keywords

References

  1. O. Kwon and K. S. Min, "Dataline redundancy circuit using simple shift logic circuit for dual-port 1T-SRAM embedded in display ICs," Journal of Institute of Korean Electrical and Electronics Engineers, vol. 11, no. 4, pp. 129-136, Dec. 2007.
  2. T. Tanzawa, Y. Takano, K. Watanabe, and S. Atsumi, "High-voltage transistor scaling circuit techniques for high-density negative-gate channel-erasing nor flash memories," IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1318-1325, Oct. 2002. https://doi.org/10.1109/JSSC.2002.803045
  3. S. H. Lim and K. H. Park, "An efficient NAND flash file system for flash memory storage," IEEE Trans. Computers, vol. 55, no. 7, pp. 906-912, July 2006. https://doi.org/10.1109/TC.2006.96
  4. S. Kuge, F. Morishita, T. Tsuruda, S. Tomishima, M. Tsukude, T. Yamagata, and K. Arimoto, "SOI-DRAM circuit technologies for low power high speed multigiga scale memories," IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 586-591, Apr. 1996. https://doi.org/10.1109/4.499736
  5. X. Q. Wei, L. P. Shi, R. Walia, T. C. Chong, R. Zhao, X. S. Miao, and B. S. Quek, "HSPICE macromodel of PCRAM for binary and multilevel storage," IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 56-62, Jan. 2006. https://doi.org/10.1109/TED.2005.860645
  6. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, "Progress and outlook for MRAM technology," IEEE Trans. Magnetics, vol. 35, no. 5, pp. 2814-2819, Sep. 1999. https://doi.org/10.1109/20.800991
  7. A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis, K. Moon, A. Khvalkovskiy, R. Kawakami, X. Luo, A. Ong, E. Chen, and M. Krounbi, "Latest advances and roadmap for in-plane and perpendicular STT-RAM," IEEE International Memory Workshop, pp. 1-3, Monterey in California, May 2011.
  8. C. M. Jung, E. S. Lee, and K. S. Min, "Continuous and accurate PCRAM current-voltage model," Journal of Semiconductor Technology and Science, vol. 11, no. 3, pp. 162-168, Sep. 2011. https://doi.org/10.5573/JSTS.2011.11.3.162
  9. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, May 2008. https://doi.org/10.1038/nature06932
  10. D. Ventra, Y. V. Pershin, and L. O. Chua, "Circuit elements with memory: memristors, memcapacitors, and meminductors," Proceedings of the IEEE, vol. 97, no. 10, pp. 1717-1724, Oct. 2009. https://doi.org/10.1109/JPROC.2009.2021077
  11. K. H. Jo, C. M. Jung, K. S. Min, and S. M. Kang, "Self-adaptive write circuit for low-power and variation-tolerant memristors," IEEE Trans. Nanotechnology, vol. 9, no. 6, pp. 675-678, Nov. 2010. https://doi.org/10.1109/TNANO.2010.2052108
  12. C. M. Jung, J. M. Choi, and K. S. Min, "Two-step write scheme for reducing sneak-path leakage in complementary memristor array," IEEE Trans. Nanotechnology, vol. 11, no. 3, pp. 611-618, May 2012. https://doi.org/10.1109/TNANO.2012.2188302
  13. Y. V. Pershin and D. Ventra, "Practical approach to programmable analog circuit with memristors," IEEE. Trans. Circuits and Systems, vol. 57, no. 8, pp. 1857-1864, Aug. 2010. https://doi.org/10.1109/TCSI.2009.2038539
  14. C. M. Jung, K. H. Jo, and K. S. Min, "SPICE macromodel and CMOS emulator for memristors," Journal of Nanoscience and Nanotechnology, vol. 12, no. 2, pp. 1487-1491, Feb. 2012. https://doi.org/10.1166/jnn.2012.4707
  15. H. Kim, M. Sah, C. Yang, S. Cho, and L. O. Chua, "Memristor emulator for memristor circuit applications," IEEE Trans. Circuits and Systems, vol. 59, no. 10, pp. 2422-2431, Oct. 2012. https://doi.org/10.1109/TCSI.2012.2188957
  16. J. M. Choi, S. H. Shin, S. Cho, and K. S. Min, "CMOS circuit with small area and low complexity for emulation memristive behavior," Collaborate Conference on 3D & Material Research (CC3DMR), Jeju in Korea, June 2013.
  17. S. H. Shin, J. M. Choi, S. Cho, and K. S. Min, "Small-area and compact CMOS emulator circuit for memristors," submitted to Nano Research Letters, 2013.

Cited by

  1. CMOS-Memristor Hybrid 4-bit Multiplier Circuit for Energy-Efficient Computing vol.18, pp.2, 2014, https://doi.org/10.7471/ikeee.2014.18.2.228