DOI QR코드

DOI QR Code

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System

이류체 포그 냉방시스템의 제어알고리즘 개발

  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Kim, Young-Shik (Deptartment of Plant and Food Sciences, Sangmyung University) ;
  • Sung, In-Mo (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 남상운 (충남대학교 지역환경토목학과) ;
  • 김영식 (상명대학교 식물식품공학과) ;
  • 성인모 (충남대학교 지역환경토목학과)
  • Received : 2013.05.10
  • Accepted : 2013.05.24
  • Published : 2013.06.30

Abstract

In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.

최근 국내에 많이 보급되고 있는 이류체 포그 냉방시스템의 효율적인 제어알고리즘을 개발하기 위하여 다양한 조건의 분무사이클을 설정하여 토마토재배 온실에서 냉방실험을 실시하였다. 냉방효과는 평균 $1.2{\sim}4.0^{\circ}C$를 보였고, 냉방효율은 평균 8.2~32.9%로 나타났다. 분무간격에 따른 실험에서 90초 분무사이클의 냉방효율이 가장 높았고, 대체로 분무시간이 길수록, 정지시간이 짧을수록 냉방효율이 높게 나타났다. 이류체 포그시스템의 분무량이 증가할수록 냉방효율이 높아지는 경향을 찾을 수 있었다. 그러나 분무량을 증가시키더라도 내부공기가 포화상태에 가까워지면 더 이상 증발이 일어나지 않으므로 내부공기가 포화상태에 도달하기 전까지 분무량을 증대시키는 방법으로 냉방효율을 높일 수 있을 것으로 판단된다. 냉방효율이 증가함에 따라 실내공기의 포차는 감소하였고 실내외 절대습도 차이는 증가하는 경향을 보였다. 포그의 증발량이 증가할수록 실내와 실외의 절대습도 차이는 커지고, 이에 따라 환기에 의한 수증기 배출이 잘 되어 다시 증발효율을 상승시키므로 냉방효율이 높아지는 순환구조를 갖게 되는 것으로 판단된다. 분무시간과 정지시간에 따른 실내공기의 포차변화를 회귀분석한 결과 $10g{\cdot}kg^{-1}$의 포차 변화에 필요한 분무시간은 120초, 정지시간은 60초로 나타났다. 그러나 온도의 진동폭을 줄이고 냉방효율을 높이기 위해서는 포차의 변동범위를 $5g{\cdot}kg^{-1}$으로 설정하여 60초 분무, 30초 정지가 더 적당할 것으로 판단된다. 이류체 포그시스템의 제어방식을 컴퓨터 제어시스템과 현재 보급되고 있는 간편제어시스템으로 분류하여 제어알고리즘을 유도하였다. 자연환기 온실에서 간편 제어시스템을 사용한다면 분무사이클을 60초 on, 30초 off로 설정하고 온도하한은 30~$30{\sim}32^{\circ}C$, 습도상한은 85~90%로 설정할 것을 제안한다.

Keywords

References

  1. Abdel-Ghany, A.M. and T. Kozai. 2006. Cooling efficiency of fogging systems for greenhouses. Biosystems Engineering 94(1):97-109. https://doi.org/10.1016/j.biosystemseng.2006.02.008
  2. Arbel, A., O. Yekutieli, and M. Barak. 1999. Performance of a fog system for cooling greenhouses. J. Agric. Engng Res. 72:129-136. https://doi.org/10.1006/jaer.1998.0351
  3. Arbel, A., M. Barak, and A. Shklyar. 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering 84(1):45-55. https://doi.org/10.1016/S1537-5110(02)00216-7
  4. ASAE Standards, 1997. Heating, ventilating and cooling greenhouses. ASAE. St. Joseph, Michigan. p.663-670.
  5. Handarto, M. Hayashi, K. Ohyama, H. Toida, E. Goto, and T. Kozai. 2006. Developing control logic for a high-pressure fog cooling system operation for a naturally ventilated greenhouse. Environ. Control Biol. 44(1):1-9. https://doi.org/10.2525/ecb.44.1
  6. Kim, M.K., K.S. Kim, and H.J. Kwon. 2001. The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. Journal of Bio-Environment Control 10(1):10-14 (in Korean).
  7. Kittas, C., T. Bartzanas, and A. Jaffrin. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering 85:87-94. https://doi.org/10.1016/S1537-5110(03)00018-7
  8. Lee, H.W. and Y.S. Kim. 2011. Application of low pressure fogging system for commercial tomato greenhouse cooling. Journal of Bio-Environment Control 20(1):1-7 (in Korean).
  9. Lee, J.H. 2013. Introduction of commercial crop production system and techniques in state-of-the-art greenhouse horticulture. Proceeding of the KSAM & KSBEC 203 Spring Conference. p.27-29 (in Korean).
  10. Li, S. and D.H. Willits. 2008. Comparing low-pressure and high-pressure fogging systems in naturally ventilated greenhouses. Biosystems Engineering 101:69-77. https://doi.org/10.1016/j.biosystemseng.2008.06.004
  11. Nam, S.W., G.A. Giacomelli, K.S. Kim, and N. Sabeh. 2005. Analysis of temperature gradients in greenhouse equipped with fan and pad system by CFD method. Journal of Bio- Environment Control 14(2):76-82 (in Korean).
  12. Nam, S.W., Y.S. Kim, I.M. Sung, and G.H. Ko. 2011. Operation status and improvements of low pressure air fog nozzles installed in greenhouses. Proceeding of Bio-Environment Control 20(2):210-211 (in Korean).
  13. Nam, S.W., Y.S. Kim, I.M. Sung, and G.H. Ko. 2012. Cooling efficiency of low pressure compressed air fogging system in naturally ventilated greenhouses. J. of the KSAE 54(5):49- 55 (in Korean).