DOI QR코드

DOI QR Code

Torque control during lingual anterior retraction without posterior appliances

  • Mo, Sung-Seo (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea, College of Medicine) ;
  • Kim, Seong-Hun (Department of Orthodontics, School of Dentistry, Kyung Hee University) ;
  • Sung, Sang-Jin (Department of Orthodontics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chung, Kyu-Rhim (Division of Orthodontics, Department of Dentistry, Ajou University College of Medicine) ;
  • Chun, Yun-Sic (Department of Dentistry, Ewha Womans University School of Medicine) ;
  • Kook, Yoon-Ah (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea, College of Medicine) ;
  • Nelson, Gerald (University of California, San Francisco)
  • Received : 2012.03.12
  • Accepted : 2012.07.04
  • Published : 2013.02.25

Abstract

Objective: To evaluate the factors that affect torque control during anterior retraction when utilizing the C-retractor with a palatal miniplate as an exclusive source of anchorage without posterior appliances. Methods: The C-retractor was modeled using a 3-dimensional beam element (0.9-mm-diameter stainless-steel wire) attached to mesh bonding pads. Various vertical heights and 2 attachment positions for the lingual anterior retraction hooks (LARHs) were evaluated. A force of 200 g was applied from each side hook of the miniplate to the splinted segment of 6 or 8 anterior teeth. Results: During anterior retraction, an increase in the LARH vertical height increased the amount of lingual root torque and intrusion of the incisors. In particular, with increasing vertical height, the tooth displacement pattern changed from controlled tipping to bodily displacement and then to lingual root displacement. The effects were enhanced when the LARH was located between the central and lateral incisors, as compared to when the LARH was located between the lateral incisors and canines. Conclusions: Three-dimensional lingual anterior retraction of the 6 or 8 anterior teeth can be accomplished using the palatal miniplate as the only anchorage source. Using LARHs at different heights or positions affects the quality of torque and intrusion.

Keywords

References

  1. Ye L, Kula KS. Status of lingual orthodontics. World J Orthod 2006;7:361-8.
  2. Takemoto K, Scuzzo G. The straight-wire concept in lingual orthodontics. J Clin Orthod 2001;35:46-52.
  3. Gorman CJ Jr. Lingual orthodontics. Dent Clin North Am 1997;41:111-25.
  4. Hong RK, Sohn HW. Update on the Fujita lingual bracket. J Clin Orthod 1999;33:136-42.
  5. Wiechmann D, Gerss J, Stamm T, Hohoff A. Prediction of oral discomfort and dysfunction in lingual orthodontics: a preliminary report. Am J Orthod Dentofacial Orthop 2008;133:359-64. https://doi.org/10.1016/j.ajodo.2006.03.045
  6. Miyawaki S, Yasuhara M, Koh Y. Discomfort caused by bonded lingual orthodontic appliances in adult patients as examined by retrospective questionnaire. Am J Orthod Dentofacial Orthop 1999;115:83-8. https://doi.org/10.1016/S0889-5406(99)70320-3
  7. Stamm T, Hohoff A, Ehmer U. A subjective comparison of two lingual bracket systems. Eur J Orthod 2005;27:420-6. https://doi.org/10.1093/ejo/cji034
  8. Cacciafesta V, Sfondrini MF. One-appointment correc tion of a scissor bite with 2D lingual brackets and fiber-reinforced composites. J Clin Orthod 2006; 40:409-11.
  9. Park HS. A miniscrew-assisted transpalatal arch for use in lingual orthodontics. J Clin Orthod 2006; 40:12-6.
  10. Hong RK, Heo JM, Ha YK. Lever-arm and miniimplant system for anterior torque control during retraction in lingual orthodontic treatment. Angle Orthod 2005;75:129-41.
  11. Kim KH, Lee KJ, Cha JY, Park YC. Finite element analysis of effectiveness of lever arm in lingual sliding mechanics. Korean J Orthod 2011;41:324-36. https://doi.org/10.4041/kjod.2011.41.5.324
  12. Chung KR, Jeong DM, Park HJ, Kim SH, Nelson G. Severe bidentoalveolar protrusion treated with lingual biocreative therapy using palatal miniplate. Korean J Orthod 2010;40:276-87. https://doi.org/10.4041/kjod.2010.40.4.276
  13. Chung KR, Kook YA, Kim SH, Mo SS, Jung JA. Class II malocclusion treated by combining a lingual retractor and a palatal plate. Am J Orthod Dentofacial Orthop 2008;133:112-23. https://doi.org/10.1016/j.ajodo.2006.04.033
  14. Kim S, Park Y, Chung K. Severe anterior open bite malocclusion with multiple odontoma treated by C-lingual retractor and horseshoe mechanics. Angle Orthod 2003;73:206-12.
  15. Kim JS, Kim SH, Kook YA, Chung KR, Nelson G. Analysis of lingual en masse retraction combining a C-lingual retractor and a palatal plate. Angle Orthod 2011;81:662-9. https://doi.org/10.2319/100110-574.1
  16. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309. https://doi.org/10.1016/S0002-9416(72)90268-0
  17. Germane N, Bentley BE Jr, Isaacson RJ. Three biologic variables modifying faciolingual tooth angulation by straight-wire appliances. Am J Orthod Dentofacial Orthop 1989;96:312-9. https://doi.org/10.1016/0889-5406(89)90350-8
  18. Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc, Dent Cosmos 1937;24:1260-70.
  19. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92:499-505. https://doi.org/10.1016/0889-5406(87)90232-0
  20. Poppe M, Bourauel C, Jäger A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 2002;63:358-70. https://doi.org/10.1007/s00056-002-0067-8
  21. Kim MJ, Park SH, Kim HS, Mo SS, Sung SJ, Jang GW, et al. Effects of orthodontic mini-implant posi tion in the dragon helix appliance on tooth displace ment and stress distribution: a three-dimensional finite element analysis. Korean J Orthod 2011; 41:191-9. https://doi.org/10.4041/kjod.2011.41.3.191
  22. Bae SM, Park HS, Kyung HM, Kwon OW, Sung JH. Clinical application of micro-implant anchorage. J Clin Orthod 2002;36:298-302.
  23. Burstone CJ. The segmented arch approach to space closure. Am J Orthod 1982;82:361-78. https://doi.org/10.1016/0002-9416(82)90185-3
  24. Sung SJ, Kim IT, Kook YA, Chun YS, Kim SH, Mo SS. Finite-element analysis of the shift in center of resistance of the maxillary dentition in relation to alveolar bone loss. Korean J Orthod 2009;39:278-88. https://doi.org/10.4041/kjod.2009.39.5.278
  25. Jeong GM, Sung SJ, Lee KJ, Chun YS, Mo SS. Finite-element investigation of the center of resistance of the maxillary dentition. Korean J Orthod 2009;39:83-94. https://doi.org/10.4041/kjod.2009.39.2.83
  26. Jang HJ, Roh WJ, Joo BH, Park KH, Kim SJ, Park YG. Locating the center of resistance of maxillary anterior teeth retracted by Double J Retractor with palatal miniscrews. Angle Orthod 2010;80:1023-8. https://doi.org/10.2319/121409-712.1
  27. Park YC, Choi YJ, Choi NC, Lee JS. Esthetic segmental retraction of maxillary anterior teeth with a palatal appliance and orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2007;131:537-44. https://doi.org/10.1016/j.ajodo.2005.05.051
  28. Kim SH, Hwang YS, Ferreira A, Chung KR. Analysis of temporary skeletal anchorage devices used for enmasse retraction: a preliminary study. Am J Orthod Dentofacial Orthop 2009;136:268-76. https://doi.org/10.1016/j.ajodo.2007.08.023
  29. Mo SS, Kim SH, Sung SJ, Chung KR, Chun YS, Kook YA, et al. Factors controlling anterior torque during C-implant-dependent en-masse retraction without posterior appliances. Am J Orthod Dentofacial Orthop 2011;140:72-80. https://doi.org/10.1016/j.ajodo.2009.09.026
  30. Kim HS, Lee YJ, Park YG, Chung KR, Kang YG, Choo H, et al. Histologic assessment of the biological effects after speedy surgical orthodontics in a beagle animal model: a preliminary study. Korean J Orthod 2011;41:361-70. https://doi.org/10.4041/kjod.2011.41.5.361

Cited by

  1. Antero-posterior lingual sliding retraction system for orthodontic correction of hyperdivergent Class II protrusion vol.10, pp.None, 2013, https://doi.org/10.1186/1746-160x-10-22
  2. Control of anterior segment using an antero-posterior lingual sliding retraction system: a preliminary cone-beam CT study vol.19, pp.None, 2013, https://doi.org/10.1186/s40510-017-0202-0
  3. Type of tooth movement during en masse retraction of the maxillary anterior teeth using labial versus lingual biocreative therapy in adults: A randomized clinical trial vol.49, pp.6, 2013, https://doi.org/10.4041/kjod.2019.49.6.381
  4. Palatal en-masse retraction of segmented maxillary anterior teeth: A finite element study vol.49, pp.3, 2019, https://doi.org/10.4041/kjod.2019.49.3.188