DOI QR코드

DOI QR Code

Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi)

낙엽송(Larix kaempferi) 고밀도 에너지화를 위한 반탄화 최적조건 탐색

  • Na, Byeong-Il (Department of Forest Products and Technology, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Ahn, Byoung-Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Cho, Sung-Taig (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, College of Agriculture & Life Sciences, Chonnam National University)
  • 나병일 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 조성택 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2013.07.26
  • Accepted : 2013.10.18
  • Published : 2013.12.01

Abstract

In this study, torrefaction was performed to improve fuel properties of Larch. The optimal condition for torrefaction was investigated by response surface methodology. The torrefaction temperature and time ranged $220{\sim}280^{\circ}C$ and 20~80 min, respectively. As the torrefaction temperature and time increased, the carbon content of torrefied biomass increased from 49.36 to 56.65%, while its hydrogen and oxygen contents decreased from 5.56 to 5.48% and from 37.62 to 31.67%, respectively. The weight loss and calorific value increased with SF, while energy yield decreased. At the severe torrefaction condition (SF 7), the weight loss and calorific value were 26.58% and 22.30 MJ/kg, respectively. The energy contained in torrefied biomass increased to 20.41%, when compared with the untreated biomass. As the torrefaction severity increased, the energy yield decreased due to the relatively high weight loss of biomass. Therefore, the highest energy yield was obtained at high calorific value and low weight loss of biomass (SF 5.72).

본 연구에서는 낙엽송의 연료특성 향상을 위해 반탄화를 수행하였으며 반응표면분석에 의해 반탄화 최적조건을 탐색하였다. 반탄화는 반응온도($220{\sim}280^{\circ}C$)와 반응시간(20~80분)에 따라 수행하였다. 반탄화 온도가 증가할수록 처리된 바이오매스의 탄소함량은 49.36%에서 56.65%로 증가한 반면, 수소와 산소의 함량은 각각 5.56%에서 5.48%, 37.62%에서 31.67%로 감소하였다. 반탄화 처리 후 바이오매스의 중량감소율 및 발열량은 반탄화 정도(SF)에 따라 증가하였다. 가장 높은 반탄화 정도(SF 7)에서 26.58%의 중량감소율을 나타났으며, 발열량은 22.30 MJ/kg으로 처리 전 바이오매스와 비교하여 20.41% 증가하였다. 에너지수율은 반탄화 정도(SF)가 높아질수록 감소하는 경향을 나타냈으며, 높은 발열량 증가와 낮은 중량감소율에서 가장 높은 에너지수율을 나타냈다(SF 5.72).

Keywords

References

  1. Hwang, B. H., Koo, J. W., Kim, Y. S., Kim, Y. S., Moon, S. P., Moon, C. K., Back, K. H., Ahn, W. Y., Lee, B. K., Lee, J. Y., Lee, H. J. and Cho, N. S., Woody Biomass. Seoul, Sunjin Moonhwasa(1998).
  2. Simes, H. C., Hassler, C. C. and Bean, T. H., "Wood Densification," 833, West Virginia University Extension Service, Morgantown, West Virginia(1988).
  3. Chen, W. H. and Kuo, P. C., "Torrefaction and Co-torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass," Energy, 36, 803-811(2011). https://doi.org/10.1016/j.energy.2010.12.036
  4. Repellin, V., Govin, A., Rolland, M. and Guyonnet, R., "Modelling Anhydrous Weight Loss of Wood Chips During Torrefaction in a Pilot Kiln," Biomass Bioenerg., 34, 602-609(2010). https://doi.org/10.1016/j.biombioe.2010.01.002
  5. Bourgois, J., Bartholin, M. C. and Guyonnet, R., "Thermal Treatment of Wood: Analysis of the Obtained Product," Wood Sci. Technol., 23, 303-310(1989). https://doi.org/10.1007/BF00353246
  6. Prins, M. J., Ptasinski, K. J. and Janssen, F. J. J. G., "Torrefaction of Wood: Part 1. Weight Loss Kinetics," J. Anal. Appl. Pyrolysis, 77, 28-34(2006). https://doi.org/10.1016/j.jaap.2006.01.002
  7. Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S. and Thomsen, T., "Changes of Chemical and Mechanical Behavior of Torrefied Wheat Straw," Biomass Bioenerg., 40, 63-70(2012). https://doi.org/10.1016/j.biombioe.2012.01.049
  8. Lee, J. W., Kim, Y. H., Lee, S. M. and Lee, H. W., "Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 385-389(2012). https://doi.org/10.9713/kcer.2012.50.2.385
  9. Lloyd, T. A. and Wyman, C. E., "Combined Sugar Yields for Dilute Sulfuric Acid Pretreatment of Corn Stover Followed by Enzymatic Hydrolysis of the Remaining Solids," Bioresour. Technol., 96, 1967-1977(2005). https://doi.org/10.1016/j.biortech.2005.01.011
  10. Technical Association of the Pulp and Paper Industry. TAPPI test methods(1992).
  11. Korea Forest Service. The quality standard of wood pellet(2009).
  12. Lee, J. W., Kim, Y. H., Lee, S. M. and Lee, H. W., "Optimizing the Torrefaction of Mixed Softwood by Response Surface Methodology for Biomass Upgrading to High Energy Density," Bioresour. Technol., 116, 471-476(2012). https://doi.org/10.1016/j.biortech.2012.03.122
  13. Felfli, F. F., Luengo, C. A., Suarez, J. A. and Beaton, P. A., "Wood briquette torrefaction," Energy Sus. Devel., 9, 19-22(2005). https://doi.org/10.1016/S0973-0826(08)60519-0
  14. Sadaka, S. and Negi, S., "Improvements of Biomass Physical and Thermochemical Characteristics via Torrefaction Process," Environmental Progress Sustainable Energy, 28, 427-434(2009). https://doi.org/10.1002/ep.10392
  15. Bergman, P. C. A., Boersma, A. R., Zwart, R. W. R. and Kiel, J. H. A., "Torrefaction for Biomass co-firing in Existing Coal-fired Power Stations," ENC-C-05-013 The Netherlands, Energy Research Center of the Netherlands(2005).
  16. Fengel, D., "Influence of Water on the Valency Range in Deconvoluted FTIR Spectra of Cellulose," Holzforschung, 47, 103-108 (1993). https://doi.org/10.1515/hfsg.1993.47.2.103
  17. Stevanic, J. S. and Salmen, L., "Characterizing Wood Polymers in the Primary Cell Wall of Norway Spruce (Picea abies (L.) Karst.) Using Dynamic FT-IR Spectroscopy," Cellulose, 15, 285-296(2008). https://doi.org/10.1007/s10570-007-9169-1
  18. Pandey, K. K., "A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy," J. Appl. Polym. Sci., 71, 1969-1975(1999). https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  19. Agarwal, U. P. and Ralph, S. A., "FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea mariana)," Appl. Spectrosc., 51, 1648-1655(1997). https://doi.org/10.1366/0003702971939316
  20. Akerholm, M. and Salmen, L., "The Oriented Structure of Lignin and Its Viscoelastic Properties Studied by Static and Dynamic FT-IR Spectroscopy," Holzforschung, 57, 459-465(2003).
  21. Gierlinger, N., Goswami, L., Schmidt, M., Burgert, I., Coutand, C. and Rogge, T., "In situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-sections," Biomacromolecules, 9, 2194-2201(2008). https://doi.org/10.1021/bm800300b
  22. Liu, Q., Wang, S., Wang, K., Luo, Z. and Cen, K., "Pyrolysis of Wood Species Based on the Compositional Analysis," Korean J. Chem. Eng., 26, 548-553(2009). https://doi.org/10.1007/s11814-009-0093-y

Cited by

  1. Production of High-density Solid Fuel Using Torrefeid Biomass of Larch Wood vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.381
  2. Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.224
  3. Upgrading of the Hydrophobicity of Larix kaempferi and Liriodendron tulipifera via Torrefaction vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.070
  4. A study on torrefaction characteristics of waste sawdust in an auger type pyrolyzer vol.18, pp.3, 2016, https://doi.org/10.1007/s10163-016-0482-3
  5. 발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구 vol.28, pp.6, 2013, https://doi.org/10.7316/khnes.2017.28.6.683
  6. 바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.725
  7. Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends vol.33, pp.5, 2013, https://doi.org/10.1007/s12206-019-0446-3
  8. Improvement in Reactivity and Pollutant Emission by Cofiring of Coal and Pretreated Biomass vol.33, pp.5, 2019, https://doi.org/10.1021/acs.energyfuels.9b00396