DOI QR코드

DOI QR Code

Effects for the Thermal Comfort Index Improvement of Park Woodlands and Lawns in Summer

여름철 공원 수림지와 잔디밭의 온열쾌적지수 개선 효과

  • Ryu, Nam-Hyong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 류남형 (경남과학기술대학교 조경학과) ;
  • 이춘석 (경남과학기술대학교 조경학과)
  • Received : 2014.09.30
  • Accepted : 2014.11.18
  • Published : 2014.12.31

Abstract

The purpose of this study was to evaluate human thermal comfort in summer by the type of greenery in parks and to explore planning solutions to supply a comfortable thermal environment in parks. The research was conducted in three different land cover types: a park with multi-wide-canopied trees(WOODLAND), park with grass(LAWN) and park with pavement(PAV) as reference sites in Hamyang-Gun SangrimPark. Field measurements of air temperature, relative humidity and wind velocity, short-wave and long-wave radiation from six directions(east, west, north, south, upward and downward) were carried out in the summer of 2014(August 21-23 and 29-30). Mean Radiant Temperature($T_{mrt}$) absorbed by a human-biometeorological reference person was estimated from integral radiation and the calculation of angular factors. The thermal comfort index PET was calculated by Rayman software, UTCI, OUT_SET$^*$ were calculated using the UTCI Calculator and the Thermal Comfort Calculator of Richard DeDear. The results showed that the WOODLAND has the maximum cooling effect during daytime, reduced air temperatures/$T_{mrt}$ by up to $5.9^{\circ}C/35^{\circ}C$ compared to PAV and lowered heat stress values despite increasing relative humidity values and decreasing wind velocity. While the LAWN had very slight cooling effects during daytime, reduced air temperatures/$T_{mrt}$ by up to $0.9^{\circ}C/3^{\circ}C$ compared to PAV, the improvement effects of the thermal comfort index was very slight. However, during nighttime the microclimatic and radiant conditions of WOODLAND, LAWN, and PAV were similar owing to the absence of solar radiation, reduction of wind velocity and an increase in relative humidity. Because the shading and evapotranspiration effects of the WOODLAND were much greater than the evapotranspiration effects of the LAWN, it can be said that the solutions for supplying comfortable thermal environment in parks are to amplify the green volumes rather than green areas. This study was undertaken to evaluate the human thermal comfort in summer of WOODLAND/LAWN parks and to determine the improvement effects of thermal comfort index. These results can contribute to the provision better thermal comfort for park users during park planning.

본 연구는 쾌적한 온열환경을 제공하는 공원을 계획하기 위한 방안을 모색하고자, 전형적인 녹지유형인 수림지와 잔디밭의 여름철 열환경을 측정 및 평가하였다. 이를 위해 함양 상림공원을 연구대상지로 하였으며, 대상지 내 녹지유형을 대표하는 수림지와 잔디밭 그리고 대조구로서 포장지에서 열환경을 조사하였다. 기상장비를 활용한 3일 동안(2014년 8월 21~23일, 29~30일)의 정점관측을 통해 열환경 변수인 기온, 상대습도, 풍속 그리고 6방향(동, 서, 남, 북, 하향, 상향) 장파 및 단파 복사를 측정하였다. 측정한 복사량을 근거로 6방향의 향별 가중치를 적용하여 인체가 흡수한 복사량을 구한 후 이를 평균복사온도로 환산하였다. 산정된 평균복사온도와 측정된 기온, 상대습도, 풍속을 바탕으로 PET는 Rayman 1.2, UTCI, OUT_SET$^*$는 UTCI Calculator와 Thermal Comfort Calculator of Richard DeDear로 산정한 후 수림지, 잔디밭 그리고 대조구의 온열쾌적성을 평가하였다. 열환경 및 온열쾌적지수의 평가 결과, 수림지는 포장지에 비해 주간(10:00~16:00)의 기온과 평균복사온도를 $5.9^{\circ}C/35^{\circ}C$ 낮추는 냉각효과를 나타냈으며, 상대적으로 낮은 풍속과 높은 상대습도를 나타냈음에도 불구하고, 온열쾌적지수 개선효과는 매우 크게 나타났다. 반면에 잔디밭은 포장지에 비해 주간(10:00~16:00)의 기온과 평균복사온도를 $0.9^{\circ}C/3^{\circ}C$ 낮추는 미미한 냉각효과를 나타냈으며, 잔디밭의 온열쾌적지수 개선효과는 크지 않은 것으로 나타났다. 한편, 야간(21:00~04:00)의 미기상 및 복사 환경은 일사 부재, 풍속 감속, 상대습도 증가로 인해 수림지, 잔디밭 및 포장지가 비슷하게 나타났다. 이러한 결과는 수림지의 차양 및 증발산 효과는 잔디밭의 증발산 효과에 비해 매우 크기 때문이라 판단되며, 공원의 온열쾌적성을 확보하기 위해서는 녹지의 면적보다 녹지의 용적에 주력해야 한다는 것을 시사하는 것이다. 본 연구는 수림지와 잔디밭에서 공원의 이용자가 체감하는 온열쾌적성을 정량적으로 평가하고, 수림지 및 잔디밭이 가진 온열쾌적지수 개선효과를 규명함으로써 향후 공원계획시 이용자를 고려한 쾌적한 온열환경을 조성하는데 기여할 수 있을 것이다.

Keywords

References

  1. Blazejczyk, K., G. Jendritzky, P. Brode, D. Fiala, G. Havenith, Y. Epstein, A. Psikuta, and B. Kampmann(2013) An introduction to the Universal Thermal Climate Index(UTCI). Geographia Polonica 86(1): 5-10. https://doi.org/10.7163/GPol.2013.1
  2. Blazejczyk, K., Y. Epstein, G. Jendritzky, H. Staiger, and B. Tinz(2012) Comparison of UTCI to selected thermal indices. Int J. Biometeorol. 56: 515-535. https://doi.org/10.1007/s00484-011-0453-2
  3. Choi, G., B. R. Lee, S. K. Kang, and J. Tenhunen(2011) Variations of summertime temperature lapse rate within a mountainous basin in the Republic of Korea - A case study of Punch Bowl, Yanggu in 2009 -2011. TERRECO Science Conference October 2-7, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany.[in Korean]
  4. Johansson, E., S. Thorsson, R. Emmanuel, and E. Kruger(2014) Instruments and methods in outdoor thermal comfort studies -The need for standardization. http://dx.doi.org/10.1016/j.uclim.2013.12.002
  5. Kim, D. W., S. J. Lee, S. D. Lee. J. S. Kim, and B. H. Han(2012) A study on ecological characteristics and changes of vegetation in Hamyangsangrim. Kor. J. Env. Eco. 26(4): 537-549.[in Korean]
  6. Lee, J. A., D. Y. Jung, J. H. Chon, S. M. Lee, and Y. B. Song(2010) An evaluation of human thermal comfort and improvement of thermal environment by spatial structure. Journal of the Korean Institute of Landscape Architecture 38(5): 12-20.[in Korean]
  7. Lim, E. N., W. S. Lee, C. H. Choi, B. G. Song, and S. G. Jung(2013) An evaluation of thermal comfort on urban neighborhood park for improving thermal environment. J. Kor. Geographic Information Studies 16(4): 153-170.[in Korean] https://doi.org/10.11108/kagis.2013.16.4.153
  8. Lin, T. P., A. Matzarakis and J. J. Huang(2006) Thermal comfort and passive design strategy of bus shelters. The 23rd Conference on Passive and Low Energy Architecture.
  9. Matzarakis, A., H. Mayer, and M. G. Iziomon(1999) Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 43: 76-84. https://doi.org/10.1007/s004840050119
  10. Matzarakis, A., F. Rutz, and H. Mayer(2010) Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 54: 131-139. https://doi.org/10.1007/s00484-009-0261-0
  11. Park, J. H.(2005) Analysis on site characteristics for the restoration of Sangrim Woodlands in Hamyang-Gun. J. Korean Env. Res. & Reveg. Tech. 8(1): 1-9.[in Korean]
  12. Park, S. K.(2013) A way for creating human bioclimatic maps using human thermal sensation(comfort) and applying the maps to urban and landscape planning and design. Journal of the Korean Institute of Landscape Architecture 41(1): 21-33.[in Korean] https://doi.org/10.9715/KILA.2013.41.1.021
  13. Petralli, M., L. Massetti, and S. Orlandini(2009) Air temperature distribution in an urban park: Differences between open-field and below a canopy. The Seventh International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan.
  14. Potchter, O. P. Cohen, and A. Bitan(2006) Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv. Israel Int. J. Climatol. 26: 1695-711. https://doi.org/10.1002/joc.1330
  15. Ryu, N. H. and C. S. Lee(2013a) Pergola's shading effects on the thermal comfort index in the summer middays. Journal of the Korean Institute of Landscape Architecture 41(6): 52-61.[in Korean] https://doi.org/10.9715/KILA.2013.41.6.052
  16. Ryu, N. H. and C. S. Lee(2013b) The characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops. Journal of the Korean Institute of Landscape Architecture 41(6): 107-116.[in Korean] https://doi.org/10.9715/KILA.2013.41.6.107
  17. Shimazaki, Y., A. Yoshida, R. Suzuki, T. Kawabata, D. Imai, and S. Kinoshita(2011) Application of human thermal load into unsteady condition for improvement of outdoor thermal comfort. Building and Environment 46(8): 1716-1724. https://doi.org/10.1016/j.buildenv.2011.02.013
  18. Spagnolo, J. and R. J. de Dear (2003) A field study of thermal comfort in outdoor and semioutdoor environments in subtropical Sydney, Australia. Build and Environ. 38: 721-38. https://doi.org/10.1016/S0360-1323(02)00209-3
  19. Thorsson, S., F. Lindberg, and B. Holmer(2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 27: 1983-1993. https://doi.org/10.1002/joc.1537
  20. Tzu-Ping and T. P. Lin(2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment 44: 2017-2026. https://doi.org/10.1016/j.buildenv.2009.02.004
  21. Watanabe, S. and T. Horikoshi(2012) Calculation of mean radiant temperature in outdoors based on measurements. Japanese J. Biometeorology 49(2): 49-59.[in Japanese]
  22. Yoon, Y. H.(2003) Air temperature variation by effect of green space condition. Journal of the Korea Society of Environmental Restoration Technology 6(1): 28-33.[in Korean]
  23. Yoon, Y. H., S. H. Park, W. T. Kim, and J. H. Kim(2014) Analyses on comparison of UTCI, PMV, WBGT between playground and green space in School. Korean J. Environ. Ecol. 28(1): 80-89.[in Korean] https://doi.org/10.13047/KJEE.2014.28.1.80
  24. http://www.mif.uni-freiburg.de/rayman/intro.htm
  25. http://www.utci.org/index.php