DOI QR코드

DOI QR Code

Analytical and Experimental Study for Development of Composite Coil Springs

복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구

  • Received : 2013.06.17
  • Accepted : 2013.10.22
  • Published : 2014.01.01

Abstract

This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

본 연구에서는 자동차 코일스프링을 대상으로 CFRP 복합재 재료의 적용가능성을 제시하였다. 기존 강재료를 복합재로 대체해서 대폭적인 경량화를 추구하기 위해서는 재료특성 뿐만 아니라 스프링의 설계인자들도 함께 최적화를 해야 할 것이다. 따라서 먼저 복합재 코일스프링의 전단특성을 고려해서 최대 비틀림강성을 나타내도록 45도로 와인딩한 봉 구조물을 구성하였으며, 예측된 전단탄성계수를 시험결과와 비교한 결과 매우 근사한 값을 나타내었다. 다음으로 45도로 와인딩된 CFRP 복합재 스프링의 소선직경을 결정하기 위해서 비틀림 강성을 강재와 복합재 두 재료에 대해서 동일하게 하였으며, 그 결과, 소선직경은 11.0 mm에서 17.5mm로 재료가 복합재로 변경됨에 따라서 증가되어야 한다. 마지막으로 이 같이 구성된 복합재 코일스프링의 유한요소모델을 구성해서 스프링상수를 계산하였으며, 시험결과와 비교 평가하였다.

Keywords

References

  1. Kim, K. S., Bae, K. M., Oh, S. Y. and Seo, M. K., 2012, "Trend of Carbon Fiber-Reinforced Composites for Lightweight Vehicles," Elastomers and Composites, Vol. 47, No. 1, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Kang, M. S., Park, H. S., Choi, J. H. and Koo, J. M., 2012, "Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 8, pp. 881-887. https://doi.org/10.3795/KSME-A.2012.36.8.881
  3. Hull, D., 1981, An Introduction to Composite Materials, Cambridge Univ. Press, pp. 102-124.
  4. ASTM Annual Book of Standards, 2001.
  5. GENOA Technical Manual. Ver. 5. 2013, AlphaStar,
  6. Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco, pp. 175-191.
  7. Byun, J. H., Lee, S. K., Um, M. K., Kim, T. W. and Bae, S. W., 2002, "Characterization and Prediction of Elastic Constants of Twisted Yawn Composites," Trans. of Korean Society of Composite Materials, Vol. 15, No. 6, pp. 30-37.
  8. ABAQUS Inc., 2010, ABAQUS Analysis User's Manual. Ver. 6.10.
  9. Buda, A. D. and Manjunata, T. S., 2010, "Investigation on the Feasibility of Composite Coil Spring for Automotive Applications," World academy of science, Engineering and Technology 70, pp. 663-667.

Cited by

  1. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1345