DOI QR코드

DOI QR Code

Characterization of Biogenic Amine-reducing Pediococcus pentosaceus Isolated from Traditionally Fermented Soybean Products

전통 장류에서 분리한 Biogenic Amines 저감 유산균 Pediococcus pentosaceus의 분리 및 특성

  • Oh, HyeonHwa (Department of Biological Sciences, Chonbuk National University) ;
  • Ryu, MyeongSeon (Department of Biological Sciences, Chonbuk National University) ;
  • Heo, Jun (Department of Biological Sciences, Chonbuk National University) ;
  • Jeon, SaeBom (Department of Biological Sciences, Chonbuk National University) ;
  • Kim, Young Sang (Ministry of Food and Drug Safety (MFDS)) ;
  • Jeong, DoYoun (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
  • 오현화 (전북대학교 자연과학대학 생물학과) ;
  • 류명선 (전북대학교 자연과학대학 생물학과) ;
  • 허준 (전북대학교 자연과학대학 생물학과) ;
  • 전새봄 (전북대학교 자연과학대학 생물학과) ;
  • 김용상 (식품의약품안전처) ;
  • 정도연 (발효미생물산업진흥원) ;
  • 엄태붕 (전북대학교 자연과학대학 생물학과)
  • Received : 2014.08.29
  • Accepted : 2014.09.24
  • Published : 2014.12.31

Abstract

Two bacterial strains, named as LE17 and LE22, were isolated from traditionally fermented soybean products in order to select lactic acid bacteria for the reduction of biogenic amines and harmful bacteria. Both strains were identified as Pediococcus pentosaceus by 16S rRNA sequence analysis and additional biochemical tests. The strain LE17 reduced the amines by 13.7% for histamine and by 25.9% for tyramine, when it grew in minimal synthetic media containing 0.1% (w/v) histamine and 0.1% tyramine at $30^{\circ}C$ for 48 h, while the strain LE22 reduced the amines by 23.7% for histamine and by 15.7% for tyramine. Both strains also had broad inhibition spectra against pathogens. Considering their properties, they could be used as starters for industrial soybean fermentation.

장류 식품에서 biogenic amines 저감 기능과 유해균 저해 능력을 동시에 지닌 유산균을 선발하기 위해, 전통방식으로 제조한 장류 시료로부터 2종의 균주를 분리하였다. 생화학적 동정 및 16S rRNA 유전자 염기 서열을 분석 결과 이들 균은 유산균인 Pediococcus pentosaceus로 동정되었다. 질소원으로 0.1% (w/v) histamine과 0.1% tyramine이 첨가된 최소 합성 배지에서 $30^{\circ}C$, 48시간 배양 후 잔류 amine을 분석한 결과, LE22 균주의 경우 histamine은 23.7%, tyramine은 15.7%가 감소한 반면, LE17의 경우 histamine은 13.7%, tyramine은 25.9%가 감소하였다. 장류에서 발견되는 주요 유해균에 대한 항균 효과를 조사한 결과, 두 균주 모두 유해균들에 대해 항균 작용을 보였다. 두 균주의 발효 특성을 고려했을 때 이들은 유산균 종균으로써 산업적 장류 생산에 적용할 수 있을 것으로 보인다.

Keywords

References

  1. BIAMFOOD. 2008. Controlling biogenic amines in traditional food fermentations in regional Europe (Project Reference no. 211441), EU's 7th Framework Program for Research, EU.
  2. Bover-Cid, S. and Holzapfel, W.H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53, 33-41. https://doi.org/10.1016/S0168-1605(99)00152-X
  3. Callejon, S., Sendra, R., Ferrer, S., and Pardo, I. 2014. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl. Microbiol. Biotechnol. 98, 185-198. https://doi.org/10.1007/s00253-013-4829-6
  4. Capozzi, V., Russo, P., Ladero, V., Fernández, M., Fiocco, D., Alvarez, M.A., Grieco, F., and Spano, G. 2012. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front. Microbiol. 3, 122.
  5. Cho, T.Y., Han, G.H., Bahn, K.N., Son, Y.W., Jang, M.R., Lee, C.H., Kim, S.H., Kim, D.B., and Kim, S.B. 2006. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol. 38, 730-737.
  6. Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud-Funel, A., Lucas, P., and Coton, E. 2010. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. 27, 1078-1085. https://doi.org/10.1016/j.fm.2010.07.012
  7. Dobrogosz, W.J. and DeMoss, R.D. 1963. Pentose utilization by Pediococcus pentosaceus. J. Bacteriol. 85, 1356-1364.
  8. FAO/WHO (Food and Agriculture Organization of the United Nations/ World Health Organization). 2013. Public health risks of histamine and other biogenic amines from fish and fishery products. Meeting Report. Rome, Italy.
  9. Jeong, D.W., Kim, H.R., Jung, G., Han, S., Kim, C.T., and Lee, J.H. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24, 648-660. https://doi.org/10.4014/jmb.1401.01009
  10. Karovicova, J. and Kohajdova, Z. 2005. Biogenic amines in food. Chem. Pap. 59, 70-79.
  11. Kim, Y.S., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012a. Isolation of biogenic amines-degrading strains of Bacillus subtilis and Bacillus amyloliquefaciens from traditionally fermented soybean products. Kor. J. Microbiol. 48, 220-224. https://doi.org/10.7845/kjm.2012.042
  12. Kim, Y.S., Jeong, D.Y., Hwang, Y.T., and Uhm, T.B. 2011a. Bacterial community profiling during the manufacturing process of traditional soybean paste by pyrosequencing method. Kor. J. Microbiol. 47, 275-280.
  13. Kim, Y.S., Jeong, J.H., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012b. Antimicrobial and biogenic amine-degrading activity of Bacillus licheniformins SCK B11 isolated from traditionally fermented red pepper paste. Kor. J. Microbiol. 48, 163-170. https://doi.org/10.7845/kjm.2012.48.2.163
  14. Kim, Y.S., Kim, M.C., Kwon, S.W., Kim, S.J., Park, I.C., Ka, J.O., and Weon, H.Y. 2011b. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49, 340-348. https://doi.org/10.1007/s12275-011-0302-3
  15. Kingcha, Y., Tosukhowong, A., Zendo, T., Roytrakul, S., Luxananil, P., Chareonpornsook, K., Valyasevi, R., Sonomoto, K., and Visessanguan, W. 2012. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control. 25, 190-196. https://doi.org/10.1016/j.foodcont.2011.10.005
  16. Marchler-Bauer, A. and Bryant, S.H. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327-W331. https://doi.org/10.1093/nar/gkh454
  17. Nakajo, K., Komori, R., Ishikawa, S., Ueno, T., Suzuki, Y., Iwami, Y., and Takahashi, N. 2006. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis. Oral Microbiol. Immunol. 21, 283-288. https://doi.org/10.1111/j.1399-302X.2006.00289.x
  18. Papagianni, M. and Anastasiadou, S. 2009. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact. 8, 3. https://doi.org/10.1186/1475-2859-8-3
  19. PSJ (The pharmaceutical society of Japan). 2005. Methods of analysis in health science, pp. 180-182. Kanehara & Co. Ltd., Tokyo, Japan.
  20. Shukla, R. and Goyal, A. 2014. Probiotic potential of Pediococcus pentosaceus CRAG3: a new isolate from fermented cucumber. Probiotics Antimicrob. Proteins 6, 11-21. https://doi.org/10.1007/s12602-013-9149-8
  21. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., and Higgins, D.G. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.
  22. Smela, D., Pechova, P., Komprda, T., Klejdus, B., and Kuban, V. 2003. Liquid chromatographic determination of biogenic amines in a meat product during fermentation and long-term storage. Czech J. Food Sci. 21, 167-175.
  23. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
  24. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  25. Tanasupawat, S., Okada, S., Kozaki, M., and Komagata, K. 1993. Characterization of Pediococcus pentosaceus and Pediococcus acidilactici strains and replacement of the type strain of P. acidilactici with the proposed neotype DSM 20284 request for an opinion. Int. J. Syst. Bacteriol. 43, 860-863. https://doi.org/10.1099/00207713-43-4-860
  26. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673- 4680. https://doi.org/10.1093/nar/22.22.4673
  27. Warthesen, J., Scanlan, R., Bills, D., and Libbey, L. 1975. Formation of heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food chem. 23, 898- 902. https://doi.org/10.1021/jf60201a004
  28. Zhang, Z., Schwarz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214. https://doi.org/10.1089/10665270050081478

Cited by

  1. 된장에서 분리한 Bacillus sp. BCNU 9171에 의한 바이오제닉 아민 생산 저해 vol.45, pp.4, 2014, https://doi.org/10.4014/mbl.1707.07002