DOI QR코드

DOI QR Code

Projection of 21st Century Climate over Korean Peninsula: Temperature and Precipitation Simulated by WRFV3.4 Based on RCP4.5 and 8.5 Scenarios

21세기 한반도 기후변화 전망: WRF를 이용한 RCP 4.5와 8.5 시나리오 기온과 강수

  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Choi, Yeon-Woo (Division of Earth Environmental System, Pusan National University) ;
  • Jo, Sera (Division of Earth Environmental System, Pusan National University) ;
  • Hong, Ja-Young (Division of Earth Environmental System, Pusan National University)
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 최연우 (부산대학교 지구환경시스템학부) ;
  • 조세라 (부산대학교 지구환경시스템학부) ;
  • 홍자영 (부산대학교 지구환경시스템학부)
  • Received : 2014.10.01
  • Accepted : 2014.12.09
  • Published : 2014.12.31

Abstract

Historical, RCP4.5 and RCP8.5 scenarios from HadGEM2-AO are dynamically downscaled over the northeast East Asia with WRFV3.4. The horizontal resolution of the produced data is 12.5 km and the periods of integration are 1979~2010 for historical and 2019~2100 for both RCP4.5 and RCP8.5. We analyze the time series, climatology, EOF and extreme climate in terms of 2 m-temperature and precipitation during 30-year for the Historical (1981~2010) and RCP4.5 and RCP8.5 (2071~2100) scenarios. According to the result, the temperature of the northeast Asia centered at the Korean Peninsula increase 2.9 and $4.6^{\circ}C$ in the RCP4.5 and RCP8.5 scenarios, respectively, by the end of the 21st century. The temperature increases with latitude and the increase is larger in winter rather than in summer. The annual mean precipitation is expected to increase by about $0.3mm\;day^{-1}$ in RCP4.5 scenario and $0.5mm\;day^{-1}$ in RCP8.5 scenario. The EOF analysis is also performed for both temperature and precipitation. For temperature, the EOF $1^{st}$ modes of all scenarios in summer and winter show that temperature increase with latitude. The $2^{nd}$ mode of EOF of each scenario shows the natural variability, exclusive of the global warming. The summer precipitation over the Korean Peninsula projected increases in EOF $1^{st}$ modes of all scenarios. For extreme climate, the increment of the number of days with daily maximum temperature above $30^{\circ}C$ per year ($DAY_{TX30}$) is 25.3 and 49.7 days in RCP4.5 and RCP8.5 respectively over the Korean Peninsula. The number of days with daily precipitation above $20mm\;day^{-1}$ per year ($DAY_{PR20}$) also increases 3.1 and 3.5 days in RCP4.5 and RCP8.5 respectively.

Keywords

References

  1. Ahn, J.-B., J. Hur, and K.-M. Shim, 2010a: A simulation of agro-climate index over the Korean peninsula using dynamical downscaling with a numerical weather prediction model. Korean J. Agr. Forest Meteor., 12, 1-10 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2010.12.1.001
  2. Ahn, J.-B., J.-Y. Hong, and K.-M. Shim, 2010b: Agro-climate indices changes over the Korean peninsula in CO2 doubled climate induced by atmosphere-ocean-land-ice coupled general circulation model. Korean J. Agr. Forest Meteor., 12, 11-22 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2010.12.1.011
  3. Ahn, J.-B., J.-Y. Hong, and M.-S. Seo, 2013: Present-Day Climate of the Korean Peninsula Centered Northern East Asia Based on CMIP5 Historical Scenario Using Fine-Resolution WRF. J. Korean Meteor. Soc., Atmos., 23, 527-538 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.4.527
  4. Baek, H.-J., C.-H. Cho, W.-T. Kwon, S.-K. Kim, J.-Y. Cho, and Y. Kim, 2011: Development strategy for new climate change scenarios based on RCP. Climate Change Res., 2, 55-68 (in Korean with English abstract). https://doi.org/10.3724/SP.J.1248.2011.00055
  5. Boo, K.-O., W.-T. Kwon, and J.-K. Kim, 2004: Vegetation changes in the regional surface climate over East Asia due to global warming using BIOME4. Geophysics and Space Physics, 27, 317-327.
  6. Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990-2009. https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
  7. Cha, Y.-M., H.-S. Lee, J. Y. Moon, W.-T. Kwon, and K.-O. Boo, 2007: Future climate projection over East Asia using ECHO-G/S. J. Korean Meteor. Soc., Atmos., 17, 55-68 (in Korean with English abstract).
  8. Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  9. Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, 1-20. doi:10.1029/2001JD001365.
  10. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model - HadGEM2. Geosci. Model Dev. Discuss., 4, 997-1062, doi:10.5194/gmdd-4-997-2011.
  11. Choi, S.-J., D.-K. Lee, and S.-G. Oh, 2011: Regional climate simulations over East-Asia by using SNURCM and WRF forced by HadGEM2-AO. J. Korean Earth Sci. Soc., 32, 750-760 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.7.750
  12. Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 6335-6532. https://doi.org/10.1029/98JD02072
  13. Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary test over multiple CORDEX domains. Clim. Res., 52, 7-29. https://doi.org/10.3354/cr01018
  14. Ho, C.-H., and I.-S. Kang, 1988: The variability of precipitation in Korea. J. Korean Meteor. Soc., 24, 38-48 (in Korean with English abstract).
  15. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  16. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  17. Hong, S.-Y., and Coauthors, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243. doi:10.1007/s13143-013-0023-0.
  18. Houghton, J. T., G. J. Jenkins, and J. J. Ephraums (eds.), 1990: Climate Change - The IPCC Scientific Assessment. Cambridge University Press, Cambridge.
  19. Im, E. S., and W. T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using a regional climate change scenario. Scientific Online Letters on the Atmosphere, 3, 17-20.
  20. Im, E. S., J. B. Ahn, A. R. Remedio, and W. T. Kwon, 2008: Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. Int. J. Climatol., 28, 1861-1877. https://doi.org/10.1002/joc.1664
  21. IPCC, 2007: Climate Change 2007: The Physical Scientific Basis, Working Croup I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
  22. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  23. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  24. Kim, M.-J., J.-H. Shin, H.-S. Lee, and W.-T. Kwon, 2013: An uncertainty assessment of AOGCM and future projection over East Asia. J. Korean Meteor. Soc., Atmos., 18, 507-524 (in Korean with English abstract).
  25. Lee, J.-W., and S.-Y. Hong, 2006: A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model. J. Korean Meteor. Soc., Atmos., 16, 319-332 (in Korean with English abstract).
  26. Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2013: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 1-15.
  27. Legutke, S., and R. Voss, 1999: The Hamburg atmosphereocean coupled circulation model ECHO-G. German Climate Computer Centre (DKRZ) Tech. Rep., 18, 62 pp.
  28. Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16, 426- 444. https://doi.org/10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2
  29. Meehl, G. A., W. M. Washington, C. M. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in twentieth-century climate. J. Climate, 17, 3721-3727. https://doi.org/10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2
  30. Ministry of Science and Technology, 1991: Development of an Operational Weather Information System for Agricultural Applications in Cheju Island (III). Ministry of Science and Technology, 28 pp.
  31. Moss, R., and Coauthors, 2008: Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.
  32. Oh, S.-G., M.-S. Suh, D.-H. Cha, and S.-J. Choi, 2011: Simulation skills of RegCM4 for regional climate over CORDEX East Asia driven by HadGEM2-AO. J. Korean Earth Sci. Soc., 32, 732-749 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.7.732
  33. Oh, S.-G., M.-S. Suh, and D.-H. Cha, 2012: Performance of RegCM4 for extreme climate over South Korea in the CORDEX East Asia framework and it's relation to lateral boundary condition. Proceeding of Spring meeting of KMS, 49-50.
  34. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2013JD020693.
  35. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 125 pp. DOI:10.5065/D68S4MVH.
  36. Sung, J.-H., H.-S. Kang, S. Park, C.-H. Cho, D.-H. Bae, and Y.-O. Kim, 2012: Projection of extreme precipitation at the end of 21st century over South Korea based on Representative Concentration Pathways (RCP). J. Korean Meteor. Soc., Atmos., 22, 221-231 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.2.221

Cited by

  1. Variability of Wind Energy in Korea Using Regional Climate Model Ensemble Projection vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.373
  2. Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index vol.52, pp.2, 2016, https://doi.org/10.1007/s13143-016-0020-1
  3. Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios vol.52, pp.2, 2016, https://doi.org/10.1007/s13143-016-0021-0